Suppr超能文献

基于局部和顺序信息的人类年龄估计。

Human Age Estimation Based on Locality and Ordinal Information.

出版信息

IEEE Trans Cybern. 2015 Nov;45(11):2522-34. doi: 10.1109/TCYB.2014.2376517.

Abstract

In this paper, we propose a novel feature selection-based method for facial age estimation. The face aging is a typical temporal process, and facial images should have certain ordinal patterns in the aging feature space. From the geometrical perspective, a facial image can be usually seen as sampled from a low-dimensional manifold embedded in the original high-dimensional feature space. Thus, we first measure the energy of each feature in preserving the underlying local structure information and the ordinal information of the facial images, respectively, and then we intend to learn a low-dimensional aging representation that can maximally preserve both kinds of information. To further improve the performance, we try to eliminate the redundant local information and ordinal information as much as possible by minimizing nonlinear correlation and rank correlation among features. Finally, we formulate all these issues into a unified optimization problem, which is similar to linear discriminant analysis in format. Since it is expensive to collect the labeled facial aging images in practice, we extend the proposed supervised method to a semi-supervised learning mode including the semi-supervised feature selection method and the semi-supervised age prediction algorithm. Extensive experiments are conducted on the FACES dataset, the Images of Groups dataset, and the FG-NET aging dataset to show the power of the proposed algorithms, compared to the state-of-the-arts.

摘要

在本文中,我们提出了一种基于新特征选择的人脸年龄估计方法。人脸老化是一个典型的时间过程,面部图像在老化特征空间中应该具有一定的顺序模式。从几何角度来看,面部图像通常可以被视为从嵌入原始高维特征空间的低维流形中采样得到的。因此,我们首先分别测量每个特征在保持底层局部结构信息和面部图像的顺序信息方面的能量,然后我们试图学习一种能够最大程度地保留这两种信息的低维老化表示。为了进一步提高性能,我们试图通过最小化特征之间的非线性相关性和秩相关性来尽可能消除冗余的局部信息和顺序信息。最后,我们将所有这些问题归结为一个统一的优化问题,其格式类似于线性判别分析。由于在实践中收集标记的人脸老化图像代价高昂,我们将所提出的监督方法扩展到包括半监督特征选择方法和半监督年龄预测算法的半监督学习模式。在 FACES 数据集、Groups 数据集和 FG-NET 老化数据集上进行了广泛的实验,以展示所提出算法的强大功能,与现有技术相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验