Suppr超能文献

基于双层老化字典学习的个性化年龄增长。

Personalized Age Progression with Bi-Level Aging Dictionary Learning.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):905-917. doi: 10.1109/TPAMI.2017.2705122. Epub 2017 May 17.

Abstract

Age progression is defined as aesthetically re-rendering the aging face at any future age for an individual face. In this work, we aim to automatically render aging faces in a personalized way. Basically, for each age group, we learn an aging dictionary to reveal its aging characteristics (e.g., wrinkles), where the dictionary bases corresponding to the same index yet from two neighboring aging dictionaries form a particular aging pattern cross these two age groups, and a linear combination of all these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. First, beyond the aging dictionaries, each person may have extra personalized facial characteristics, e.g., mole, which are invariant in the aging process. Second, it is challenging or even impossible to collect faces of all age groups for a particular person, yet much easier and more practical to get face pairs from neighboring age groups. To this end, we propose a novel Bi-level Dictionary Learning based Personalized Age Progression (BDL-PAP) method. Here, bi-level dictionary learning is formulated to learn the aging dictionaries based on face pairs from neighboring age groups. Extensive experiments well demonstrate the advantages of the proposed BDL-PAP over other state-of-the-arts in term of personalized age progression, as well as the performance gain for cross-age face verification by synthesizing aging faces.

摘要

年龄增长是指为个体的面部在任何未来年龄进行美学重渲染。在这项工作中,我们旨在以个性化的方式自动进行人脸老化。基本上,对于每个年龄组,我们学习一个老化字典来揭示其老化特征(例如皱纹),其中对应于相同索引的字典基但来自两个相邻的老化字典形成了跨越这两个年龄组的特定老化模式,并且所有这些模式的线性组合表达了特定的个性化老化过程。此外,字典学习过程中考虑了两个因素。首先,除了老化字典之外,每个人可能还有额外的个性化面部特征,例如,在老化过程中不变的痣。其次,收集特定人的所有年龄组的人脸具有挑战性,甚至不可能,但从相邻年龄组获取人脸对则更容易且更实际。为此,我们提出了一种新的基于双层字典学习的个性化年龄增长(BDL-PAP)方法。在这里,双层字典学习被公式化为基于来自相邻年龄组的人脸对学习老化字典。广泛的实验很好地证明了所提出的 BDL-PAP 在个性化年龄增长方面优于其他最先进的方法,以及通过合成老化人脸进行跨年龄人脸验证的性能提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验