Suppr超能文献

岩石地球化学在细菌蛋白质组中引发应激和饥饿反应。

Rock geochemistry induces stress and starvation responses in the bacterial proteome.

作者信息

Bryce Casey C, Le Bihan Thierry, Martin Sarah F, Harrison Jesse P, Bush Timothy, Spears Bryan, Moore Alanna, Leys Natalie, Byloos Bo, Cockell Charles S

机构信息

UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.

Centre for Synthetic and Systems Biology, Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, UK.

出版信息

Environ Microbiol. 2016 Apr;18(4):1110-21. doi: 10.1111/1462-2920.13093. Epub 2015 Dec 22.

Abstract

Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label-free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium- and iron-limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock-dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments.

摘要

微生物与岩石之间的相互作用在地球系统过程中起着重要作用。然而,对于微生物在岩石环境中生存所需的分子能力,我们知之甚少。通过一种无标记定量蛋白质组学方法,我们发现一种模式细菌(嗜金属贪铜菌CH34)可以利用火山岩来满足一些元素需求,从而在镁和铁限制的培养基中提高细胞分裂速率。然而,这些岩石还通过与pH值、元素浸出和营养物质表面吸附相关的化学变化引入了多种新的压力,这些压力反映在蛋白质组中。例如,观察到生物可利用磷的损失,导致多种磷酸盐限制蛋白上调,这些蛋白有助于增加细胞内磷酸盐的摄取和清除。我们的结果表明,尽管提供了必需元素,但岩石化学驱动着岩石栖息生物体内复杂的代谢重组,需要在蛋白质水平上对细胞过程进行严格调控。这项研究提高了我们识别使生命能够在岩石环境中持续存在的关键微生物反应的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验