Santomartino Rosa, Waajen Annemiek C, de Wit Wessel, Nicholson Natasha, Parmitano Luca, Loudon Claire-Marie, Moeller Ralf, Rettberg Petra, Fuchs Felix M, Van Houdt Rob, Finster Kai, Coninx Ilse, Krause Jutta, Koehler Andrea, Caplin Nicol, Zuijderduijn Lobke, Zolesi Valfredo, Balsamo Michele, Mariani Alessandro, Pellari Stefano S, Carubia Fabrizio, Luciani Giacomo, Leys Natalie, Doswald-Winkler Jeannine, Herová Magdalena, Wadsworth Jennifer, Everroad R Craig, Rattenbacher Bernd, Demets René, Cockell Charles S
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands.
Front Microbiol. 2020 Oct 14;11:579156. doi: 10.3389/fmicb.2020.579156. eCollection 2020.
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: , , and . To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.
微生物在地球上执行着无数任务,并且它们有望对人类太空探索至关重要。尽管人们对细菌对太空条件的反应感兴趣,但关于微重力影响的研究结果一直相互矛盾,而火星重力的影响几乎无人知晓。我们在国际空间站上进行了欧洲航天局的生物岩石实验,以研究在微重力、模拟火星重力和模拟地球重力以及地面重力对照条件下,三种细菌物种(此处原文缺失细菌物种名称)之间的微生物 - 矿物质相互作用。据我们所知,这是首次使用太空平台研究模拟火星重力对细菌影响的实验。在此,我们检验了这样一个假设:不同的重力方案会影响在太空中经过数周后达到的最终细胞浓度。尽管预测的沉降速率不同,但我们发现国际空间站上三种重力方案之间的最终细胞计数和光密度没有显著差异。这表明在实验结束时,可能与重力相关的对细菌生长的影响被克服了。结果表明,微生物支持的生物生产和生命支持系统在太空中(例如火星)可以像在地球上一样有效地运行。