Suppr超能文献

3D机器人:自动生成多样且排列良好的蛋白质结构诱饵

3DRobot: automated generation of diverse and well-packed protein structure decoys.

作者信息

Deng Haiyou, Jia Ya, Zhang Yang

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 45108, USA, Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan 430079, China and.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 45108, USA.

出版信息

Bioinformatics. 2016 Feb 1;32(3):378-87. doi: 10.1093/bioinformatics/btv601. Epub 2015 Oct 14.

Abstract

MOTIVATION

Computationally generated non-native protein structure conformations (or decoys) are often used for designing protein folding simulation methods and force fields. However, almost all the decoy sets currently used in literature suffer from uneven root mean square deviation (RMSD) distribution with bias to non-protein like hydrogen-bonding and compactness patterns. Meanwhile, most protein decoy sets are pre-calculated and there is a lack of methods for automated generation of high-quality decoys for any target proteins.

RESULTS

We developed a new algorithm, 3DRobot, to create protein structure decoys by free fragment assembly with enhanced hydrogen-bonding and compactness interactions. The method was benchmarked with three widely used decoy sets from ab initio folding and comparative modeling simulations. The decoys generated by 3DRobot are shown to have significantly enhanced diversity and evenness with a continuous distribution in the RMSD space. The new energy terms introduced in 3DRobot improve the hydrogen-bonding network and compactness of decoys, which eliminates the possibility of native structure recognition by trivial potentials. Algorithms that can automatically create such diverse and well-packed non-native conformations from any protein structure should have a broad impact on the development of advanced protein force field and folding simulation methods. AVAILIABLITY AND IMPLEMENTATION: http://zhanglab.ccmb.med.umich.edu/3DRobot/

CONTACT

jiay@phy.ccnu.edu.cn; zhng@umich.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

通过计算生成的非天然蛋白质结构构象(或诱饵)常用于设计蛋白质折叠模拟方法和力场。然而,目前文献中使用的几乎所有诱饵集均存在均方根偏差(RMSD)分布不均匀的问题,且偏向于非蛋白质样的氢键和紧密模式。同时,大多数蛋白质诱饵集是预先计算的,并且缺乏为任何目标蛋白质自动生成高质量诱饵的方法。

结果

我们开发了一种新算法3DRobot,通过具有增强氢键和紧密相互作用的自由片段组装来创建蛋白质结构诱饵。该方法用来自从头折叠和比较建模模拟的三个广泛使用的诱饵集进行了基准测试。结果表明,3DRobot生成的诱饵在RMSD空间中具有显著增强的多样性和均匀性以及连续分布。3DRobot中引入的新能量项改善了诱饵的氢键网络和紧密性,消除了通过简单势识别天然结构的可能性。能够从任何蛋白质结构自动创建这种多样且紧密堆积的非天然构象的算法,应该会对先进蛋白质力场和折叠模拟方法的发展产生广泛影响。

可用性和实现方式

http://zhanglab.ccmb.med.umich.edu/3DRobot/

联系方式

jiay@phy.ccnu.edu.cnzhng@umich.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
3DRobot: automated generation of diverse and well-packed protein structure decoys.
Bioinformatics. 2016 Feb 1;32(3):378-87. doi: 10.1093/bioinformatics/btv601. Epub 2015 Oct 14.
2
TOUCHSTONE II: a new approach to ab initio protein structure prediction.
Biophys J. 2003 Aug;85(2):1145-64. doi: 10.1016/S0006-3495(03)74551-2.
3
A homology/ab initio hybrid algorithm for sampling near-native protein conformations.
J Comput Chem. 2013 Aug 15;34(22):1925-36. doi: 10.1002/jcc.23339. Epub 2013 Jun 3.
6
Using physical features of protein core packing to distinguish real proteins from decoys.
Protein Sci. 2020 Sep;29(9):1931-1944. doi: 10.1002/pro.3914.
9
Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.
Bioinformatics. 2015 Dec 1;31(23):3773-81. doi: 10.1093/bioinformatics/btv459. Epub 2015 Aug 7.

引用本文的文献

1
Deep Learning Enables Automatic Correction of Experimental HDX-MS Data with Applications in Protein Modeling.
J Am Soc Mass Spectrom. 2024 Feb 7;35(2):197-204. doi: 10.1021/jasms.3c00285. Epub 2024 Jan 23.
2
Structural Shifts of the Parvovirus B19 Capsid Receptor-binding Domain: A Peptide Study.
Protein Pept Lett. 2024;31(2):128-140. doi: 10.2174/0109298665272845231121064717.
4
De novo protein fold design through sequence-independent fragment assembly simulations.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2208275120. doi: 10.1073/pnas.2208275120. Epub 2023 Jan 19.
5
An integrated protein structure fitness scoring approach for identifying native-like model structures.
Comput Struct Biotechnol J. 2022 Nov 17;20:6467-6472. doi: 10.1016/j.csbj.2022.11.032. eCollection 2022.
6
Construction of a Deep Neural Network Energy Function for Protein Physics.
J Chem Theory Comput. 2022 Sep 13;18(9):5649-5658. doi: 10.1021/acs.jctc.2c00069. Epub 2022 Aug 8.
7
A simple neural network implementation of generalized solvation free energy for assessment of protein structural models.
RSC Adv. 2019 Nov 6;9(62):36227-36233. doi: 10.1039/c9ra05168f. eCollection 2019 Nov 4.
8
Molecular free energy optimization on a computational graph.
RSC Adv. 2021 Apr 6;11(21):12929-12937. doi: 10.1039/d1ra01455b. eCollection 2021 Mar 29.
9
Equilibrium Between Dimeric and Monomeric Forms of Human Epidermal Growth Factor is Shifted Towards Dimers in a Solution.
Protein J. 2022 Apr;41(2):245-259. doi: 10.1007/s10930-022-10051-y. Epub 2022 Mar 29.
10
A Benchmark Dataset for Evaluating Practical Performance of Model Quality Assessment of Homology Models.
Bioengineering (Basel). 2022 Mar 15;9(3):118. doi: 10.3390/bioengineering9030118.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Decoy Database Improvement for Protein Folding.
J Comput Biol. 2015 Sep;22(9):823-36. doi: 10.1089/cmb.2015.0116. Epub 2015 Aug 10.
3
The I-TASSER Suite: protein structure and function prediction.
Nat Methods. 2015 Jan;12(1):7-8. doi: 10.1038/nmeth.3213.
4
Sampling and scoring: a marriage made in heaven.
Proteins. 2013 Nov;81(11):1874-84. doi: 10.1002/prot.24343. Epub 2013 Aug 19.
5
CABS-fold: Server for the de novo and consensus-based prediction of protein structure.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W406-11. doi: 10.1093/nar/gkt462. Epub 2013 Jun 8.
6
CABS-flex: Server for fast simulation of protein structure fluctuations.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W427-31. doi: 10.1093/nar/gkt332. Epub 2013 May 8.
7
Improved model quality assessment using ProQ2.
BMC Bioinformatics. 2012 Sep 10;13:224. doi: 10.1186/1471-2105-13-224.
8
What is the best reference state for designing statistical atomic potentials in protein structure prediction?
Proteins. 2012 Aug;80(9):2311-22. doi: 10.1002/prot.24121. Epub 2012 Jun 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验