Suppr超能文献

根据在熔点附近获得的热物理数据预测离子流体和非离子流体的临界温度。

Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

作者信息

Weiss Volker C

机构信息

Bremen Center for Computational Materials Science, Universität Bremen, Am Fallturm 1, 28359 Bremen, Germany.

出版信息

J Chem Phys. 2015 Oct 14;143(14):144503. doi: 10.1063/1.4932404.

Abstract

In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

摘要

在基于对应态方法对流体热物理数据进行关联和预测时,临界温度(Tc)起着核心作用。然而,对于某些流体,特别是离子流体,临界区域很难通过实验获取,甚至无法获取。对于熔盐,(Tc)约为(3000K),这使得精确测量成为一项具有挑战性的任务。室温离子液体(RTILs)由于其有机成分在(400K)至(600K)之间会发生热分解;该温度范围比最近对其(Tc)的估计值低数百摄氏度。在这两种情况下,基于在三相点或熔点附近更低温度下记录的实验数据进行外推来推导(Tc)的可靠方法是必要且有用的,因为临界点会影响流体在整个液体区域的行为。在此,我们建议采用导致通用流体行为的标度方法[Román等人,《化学物理杂志》123,124512(2005)]来推导一个非常简单的表达式,该表达式允许人们从在非常窄的低温范围内测量的液体密度、表面张力或汽化焓来估计(Tc)。我们证明了该方法对于(Tc)已知的简单和极性中性流体的有效性,然后使用该方法来获得离子流体(Tc)的估计值。当将这些估计值与文献中报道的估计值进行比较时,发现RTILs的结果吻合良好,而熔盐(NaCl)和(KCl)的估计值比先前的估计值低(10%)。发现离子流体的共存曲线用有效指数(\beta_{eff}=0.5)比用(\beta_{eff}=0.33)能更充分地描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验