Edward Grey Institute of Field Ornithology, Department of Zoology , University of Oxford , Oxford, UK ; Department of Anthropology , University of California Davis , Davis, CA, USA ; Smithsonian Tropical Research Institute , Ancon, Panama.
Department of Ecology and Evolutionary Biology , Princeton University , Princeton, NJ, USA.
R Soc Open Sci. 2015 Sep 16;2(9):150367. doi: 10.1098/rsos.150367. eCollection 2015 Sep.
Social network analysis provides a useful lens through which to view the structure of animal societies, and as a result its use is increasingly widespread. One challenge that many studies of animal social networks face is dealing with limited sample sizes, which introduces the potential for a high level of uncertainty in estimating the rates of association or interaction between individuals. We present a method based on Bayesian inference to incorporate uncertainty into network analyses. We test the reliability of this method at capturing both local and global properties of simulated networks, and compare it to a recently suggested method based on bootstrapping. Our results suggest that Bayesian inference can provide useful information about the underlying certainty in an observed network. When networks are well sampled, observed networks approach the real underlying social structure. However, when sampling is sparse, Bayesian inferred networks can provide realistic uncertainty estimates around edge weights. We also suggest a potential method for estimating the reliability of an observed network given the amount of sampling performed. This paper highlights how relatively simple procedures can be used to estimate uncertainty and reliability in studies using animal social network analysis.
社会网络分析为观察动物社会结构提供了一个有用的视角,因此其应用越来越广泛。动物社会网络研究面临的一个挑战是处理有限的样本量,这可能导致在估计个体之间的关联或相互作用率时存在高度不确定性。我们提出了一种基于贝叶斯推断的方法,将不确定性纳入网络分析中。我们测试了这种方法在捕捉模拟网络的局部和全局特性方面的可靠性,并将其与最近提出的基于引导的方法进行了比较。我们的结果表明,贝叶斯推断可以为观察到的网络中的基本确定性提供有用的信息。当网络被充分采样时,观察到的网络接近真实的基础社会结构。然而,当采样稀疏时,贝叶斯推断网络可以提供有关边权重的现实不确定性估计。我们还提出了一种基于所执行采样量估计观察到的网络可靠性的潜在方法。本文强调了如何使用相对简单的程序来估计使用动物社会网络分析的研究中的不确定性和可靠性。