Suppr超能文献

网络上传播过程的贝叶斯推理。

Bayesian inference of spreading processes on networks.

作者信息

Dutta Ritabrata, Mira Antonietta, Onnela Jukka-Pekka

机构信息

Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.

Department of Science and High Technology, Università degli Studi dell'Insubria, Varese, Italy.

出版信息

Proc Math Phys Eng Sci. 2018 Jul;474(2215):20180129. doi: 10.1098/rspa.2018.0129. Epub 2018 Jul 18.

Abstract

Infectious diseases are studied to understand their spreading mechanisms, to evaluate control strategies and to predict the risk and course of future outbreaks. Because people only interact with few other individuals, and the structure of these interactions influence spreading processes, the pairwise relationships between individuals can be usefully represented by a network. Although the underlying transmission processes are different, the network approach can be used to study the spread of pathogens in a contact network or the spread of rumours in a social network. We study simulated simple and complex epidemics on synthetic networks and on two empirical networks, a social/contact network in an Indian village and an online social network. Our goal is to learn simultaneously the spreading process parameters and the first infected node, given a fixed network structure and the observed state of nodes at several time points. Our inference scheme is based on approximate Bayesian computation, a likelihood-free inference technique. Our method is agnostic about the network topology and the spreading process. It generally performs well and, somewhat counter-intuitively, the inference problem appears to be easier on more heterogeneous network topologies, which enhances its future applicability to real-world settings where few networks have homogeneous topologies.

摘要

研究传染病是为了了解其传播机制、评估控制策略并预测未来疫情爆发的风险和过程。由于人们只与少数其他人互动,且这些互动的结构会影响传播过程,个体之间的两两关系可以通过网络有效地表示出来。尽管潜在的传播过程不同,但网络方法可用于研究病原体在接触网络中的传播或谣言在社交网络中的传播。我们在合成网络以及两个实证网络(一个印度村庄的社会/接触网络和一个在线社交网络)上研究模拟的简单和复杂流行病。我们的目标是在给定固定网络结构以及在几个时间点观察到的节点状态的情况下,同时了解传播过程参数和首个被感染节点。我们的推理方案基于近似贝叶斯计算,这是一种无似然推理技术。我们的方法对网络拓扑和传播过程不做假设。它通常表现良好,而且有点违反直觉的是,在更具异质性的网络拓扑上推理问题似乎更容易,这增强了其未来在很少有网络具有同质性拓扑的现实世界场景中的适用性。

相似文献

1
Bayesian inference of spreading processes on networks.
Proc Math Phys Eng Sci. 2018 Jul;474(2215):20180129. doi: 10.1098/rspa.2018.0129. Epub 2018 Jul 18.
2
Reconstructing contact network parameters from viral phylogenies.
Virus Evol. 2016 Oct 30;2(2):vew029. doi: 10.1093/ve/vew029. eCollection 2016 Jul.
3
Flexible Bayesian inference on partially observed epidemics.
J Complex Netw. 2024 Mar 25;12(2):cnae017. doi: 10.1093/comnet/cnae017. eCollection 2024 Apr.
5
Probabilistic predictions of SIS epidemics on networks based on population-level observations.
Math Biosci. 2022 Aug;350:108854. doi: 10.1016/j.mbs.2022.108854. Epub 2022 Jun 2.
6
A Bayesian generative neural network framework for epidemic inference problems.
Sci Rep. 2022 Nov 16;12(1):19673. doi: 10.1038/s41598-022-20898-x.
7
High-Dimensional Bayesian Network Inference From Systems Genetics Data Using Genetic Node Ordering.
Front Genet. 2019 Dec 20;10:1196. doi: 10.3389/fgene.2019.01196. eCollection 2019.
9
Global and local community memberships for estimating spreading capability of nodes in social networks.
Appl Netw Sci. 2021;6(1):84. doi: 10.1007/s41109-021-00421-3. Epub 2021 Nov 2.
10
Heterogeneous node responses to multi-type epidemics on networks.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200587. doi: 10.1098/rspa.2020.0587. Epub 2020 Nov 4.

引用本文的文献

1
Connecting mass-action models and network models for infectious diseases.
PLoS Comput Biol. 2025 Aug 18;21(8):e1013373. doi: 10.1371/journal.pcbi.1013373. eCollection 2025 Aug.
2
Accounting for contact network uncertainty in epidemic inferences with Approximate Bayesian Computation.
Appl Netw Sci. 2025;10(1):13. doi: 10.1007/s41109-025-00694-y. Epub 2025 Apr 22.
4
Flexible Bayesian inference on partially observed epidemics.
J Complex Netw. 2024 Mar 25;12(2):cnae017. doi: 10.1093/comnet/cnae017. eCollection 2024 Apr.
6
Active querying approach to epidemic source detection on contact networks.
Sci Rep. 2023 Jul 13;13(1):11363. doi: 10.1038/s41598-023-38282-8.
7
Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries.
Bayesian Anal. 2022 Mar;17(1):165-192. doi: 10.1214/20-ba1248. Epub 2020 Dec 8.
8
A multi-source global-local model for epidemic management.
PLoS One. 2022 Jan 12;17(1):e0261650. doi: 10.1371/journal.pone.0261650. eCollection 2022.
9
Deep learning of contagion dynamics on complex networks.
Nat Commun. 2021 Aug 5;12(1):4720. doi: 10.1038/s41467-021-24732-2.
10
Hindsight is 2020 vision: a characterisation of the global response to the COVID-19 pandemic.
BMC Public Health. 2020 Dec 7;20(1):1868. doi: 10.1186/s12889-020-09972-z.

本文引用的文献

1
Likelihood-free inference via classification.
Stat Comput. 2018;28(2):411-425. doi: 10.1007/s11222-017-9738-6. Epub 2017 Mar 13.
2
Spreading of components of mood in adolescent social networks.
R Soc Open Sci. 2017 Sep 20;4(9):170336. doi: 10.1098/rsos.170336. eCollection 2017 Sep.
3
Anatomy of news consumption on Facebook.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3035-3039. doi: 10.1073/pnas.1617052114. Epub 2017 Mar 6.
4
Fundamentals and Recent Developments in Approximate Bayesian Computation.
Syst Biol. 2017 Jan 1;66(1):e66-e82. doi: 10.1093/sysbio/syw077.
5
A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation.
Math Biosci. 2017 May;287:42-53. doi: 10.1016/j.mbs.2016.07.001. Epub 2016 Jul 18.
6
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
Nature. 2016 Jun 23;534(7608):516-9. doi: 10.1038/nature18318.
7
Reliable ABC model choice via random forests.
Bioinformatics. 2016 Mar 15;32(6):859-66. doi: 10.1093/bioinformatics/btv684. Epub 2015 Nov 20.
8
Spreading of healthy mood in adolescent social networks.
Proc Biol Sci. 2015 Aug 22;282(1813):20151180. doi: 10.1098/rspb.2015.1180.
9
A dynamic model of bovine tuberculosis spread and control in Great Britain.
Nature. 2014 Jul 10;511(7508):228-31. doi: 10.1038/nature13529. Epub 2014 Jul 2.
10
War, space, and the evolution of Old World complex societies.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16384-9. doi: 10.1073/pnas.1308825110. Epub 2013 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验