Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA.
Joint Institute for Regional Earth System Science and Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
Glob Chang Biol. 2016 Mar;22(3):1299-314. doi: 10.1111/gcb.13131. Epub 2016 Jan 6.
Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink.
植物通常会将其可用碳(C)的很大一部分用于养分获取——这些 C 本可以用于支持生长。然而,由于大多数全球陆地生物圈模型(TBM)都不包括养分获取的 C 成本,因此这些模型无法代表当前和未来对陆地 C 汇的限制。在这里,我们将一个基于植物生产力优化的养分获取模型——氮固定和吸收模型——整合到最广泛使用的 TBM 之一,即通用陆地模型中。在耦合模型中,根据菌根、非菌根、固氮微生物和再转移(来自衰老叶片)从根中获取 N 的 C 成本,动态模拟全球植物氮(N)吸收。我们发现,在全球范围内,植物每年花费 2.4 Pg C 来获取 1.0 Pg N,而 N 获取的 C 成本导致全球净初级生产力(NPP)下降 13%。菌根吸收是植物获取 N 的主要途径,占植物 N 吸收量的约 66%。值得注意的是,与丛枝菌根(AM)真菌相关的根——通常被认为在获取磷(P)方面发挥作用——据估计是全球植物 N 吸收的主要来源,这是由于 AM 相关植物在中低纬度生物区系中占主导地位。总的来说,我们的耦合模型改进了全球 NPP 下调的表示,并生成了全球尺度地下 C 分配、土壤 N 吸收和 N 再转移的空间显式模式。这些模型改进对于预测植物对改变的 N 有效性(由于 N 沉积、大气 CO2 上升和气温升高)的响应如何可能影响陆地 C 汇至关重要。