Ahkami Amir H, Qafoku Odeta, Roose Tiina, Mou Quanbing, Lu Yi, Cardon Zoe G, Wu Yuxin, Chou Chunwei, Fisher Joshua B, Varga Tamas, Handakumbura Pubudu, Aufrecht Jayde A, Bhattacharjee Arunima, Moran James J
Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA.
Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton, England, SO17 1BJ.
Soil Biol Biochem. 2024 Feb;189. doi: 10.1016/j.soilbio.2023.109253. Epub 2023 Nov 23.
The soil region influenced by plant roots, i.e., the rhizosphere, is one of the most complex biological habitats on Earth and significantly impacts global carbon flow and transformation. Understanding the structure and function of the rhizosphere is critically important for maintaining sustainable plant ecosystem services, designing engineered ecosystems for long-term soil carbon storage, and mitigating the effects of climate change. However, studying the biological and ecological processes and interactions in the rhizosphere requires advanced integrated technologies capable of decoding such a complex system at different scales. Here, we review how emerging approaches in sensing, imaging, and computational modeling can advance our understanding of the complex rhizosphere system. Particularly, we provide our perspectives and discuss future directions in developing rhizosphere sensing technologies that could potentially correlate local-scale interactions to ecosystem scale impacts. We first review integrated multimodal imaging techniques for tracking inorganic elements and organic carbon flow at nano- to microscale in the rhizosphere, followed by a discussion on the use of synthetic soil and plant habitats that bridge laboratory-to-field studies on the rhizosphere processes. We then describe applications of genetically encoded biosensors in monitoring nutrient and chemical exchanges in the rhizosphere, and the novel nanotechnology-mediated delivery approaches for introducing biosensors into the root tissues. Next, we review the recent progress and express our vision on field-deployable sensing technologies such as planar optodes for quantifying the distribution of chemical and analyte gradients in the rhizosphere under field conditions. Moreover, we provide perspectives on the challenges of linking complex rhizosphere interactions to ecosystem sensing for detecting biological traits across scales, which arguably requires using the best-available model predictions including the model-experiment and image-based modeling approaches. Experimental platforms relevant to field conditions like SMART (Sensors at Mesoscales with Advanced Remote Telemetry) soils testbed, coupled with ecosystem sensing and predictive models, can be effective tools to explore coupled ecosystem behavior and responses to environmental perturbations. Finally, we envision that with the advent of novel high-resolution imaging capabilities at nano- to macroscale, and remote biosensing technologies, combined with advanced computational models, future studies will lead to detection and upscaling of rhizosphere processes toward ecosystem and global predictions.
受植物根系影响的土壤区域,即根际,是地球上最复杂的生物栖息地之一,对全球碳流动和转化有着重大影响。了解根际的结构和功能对于维持可持续的植物生态系统服务、设计用于长期土壤碳储存的工程生态系统以及减轻气候变化的影响至关重要。然而,研究根际中的生物和生态过程及相互作用需要先进的综合技术,以便能够在不同尺度上解读这样一个复杂的系统。在此,我们综述了传感、成像和计算建模等新兴方法如何推动我们对复杂根际系统的理解。特别是,我们给出了自己的观点,并讨论了开发根际传感技术的未来方向,这些技术可能将局部尺度的相互作用与生态系统尺度的影响联系起来。我们首先综述了用于在纳米到微米尺度上追踪根际中无机元素和有机碳流动的综合多模态成像技术,接着讨论了用于衔接根际过程实验室研究与田间研究的合成土壤和植物栖息地的使用。然后,我们描述了基因编码生物传感器在监测根际中养分和化学物质交换方面的应用,以及将生物传感器引入根组织的新型纳米技术介导的递送方法。接下来,我们综述了近期进展,并对可在田间部署的传感技术表达了看法,例如用于在田间条件下量化根际中化学物质和分析物梯度分布的平面光极。此外,我们对将复杂的根际相互作用与生态系统传感联系起来以跨尺度检测生物特征所面临的挑战给出了观点,这可以说需要使用包括模型实验和基于图像的建模方法在内的最佳可用模型预测。与田间条件相关的实验平台,如SMART(具有先进远程遥测的中尺度传感器)土壤试验台,结合生态系统传感和预测模型,可以成为探索耦合生态系统行为及对环境扰动响应的有效工具。最后,我们设想随着纳米到宏观尺度新型高分辨率成像能力以及远程生物传感技术的出现,再结合先进的计算模型,未来的研究将能够检测根际过程并将其扩展到生态系统和全球预测。