Chamberlain Kelly A, Nanescu Sonia E, Psachoulia Konstantina, Huang Jeffrey K
Department of Biology, Georgetown University, Washington, D.C., USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, D.C., USA.
Department of Biology, Georgetown University, Washington, D.C., USA.
Neuropharmacology. 2016 Nov;110(Pt B):633-643. doi: 10.1016/j.neuropharm.2015.10.010. Epub 2015 Oct 22.
Oligodendrocytes readily regenerate and replace myelin membranes around axons in the adult mammalian central nervous system (CNS) following injury. The ability to regenerate oligodendrocytes depends on the availability of neural progenitors called oligodendrocyte precursor cells (OPCs) in the adult CNS that respond to injury-associated signals to induce OPC expansion followed by oligodendrocyte differentiation, axonal contact and myelin regeneration (remyelination). Remyelination ensures the maintenance of axonal conduction, and the oligodendrocytes themselves provide metabolic factors that are necessary to maintain neuronal integrity. Recent advances in oligodendrocyte regeneration research are beginning to shed light on critical intrinsic signals, as well as extrinsic, environmental factors that regulate the distinct steps of oligodendrocyte lineage progression and myelin replacement under CNS injury. These studies may offer novel pharmacological targets for regenerative medicine in inflammatory demyelinating disorders in the CNS such as multiple sclerosis. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
在成年哺乳动物中枢神经系统(CNS)受伤后,少突胶质细胞能够迅速再生并替换轴突周围的髓鞘膜。少突胶质细胞的再生能力取决于成年中枢神经系统中称为少突胶质前体细胞(OPC)的神经祖细胞的可用性,这些细胞对损伤相关信号作出反应,诱导OPC扩增,随后少突胶质细胞分化、轴突接触和髓鞘再生(髓鞘重塑)。髓鞘重塑确保轴突传导的维持,少突胶质细胞本身提供维持神经元完整性所需的代谢因子。少突胶质细胞再生研究的最新进展开始揭示关键的内在信号以及外在环境因素,这些因素在中枢神经系统损伤时调节少突胶质细胞谱系进展和髓鞘替换的不同步骤。这些研究可能为中枢神经系统炎性脱髓鞘疾病(如多发性硬化症)的再生医学提供新的药理学靶点。本文是名为“健康与疾病中的少突胶质细胞”特刊的一部分。