Suppr超能文献

人类胚胎和胎儿冠状动脉血管的发育进程

Developmental Progression of the Coronary Vasculature in Human Embryos and Fetuses.

作者信息

Tomanek Robert J

机构信息

Department of Anatomy and Cell Biology, and Cardiovascular Center, University of Iowa, Iowa City, Iowa.

出版信息

Anat Rec (Hoboken). 2016 Jan;299(1):25-41. doi: 10.1002/ar.23283. Epub 2015 Nov 28.

Abstract

Although considerable advances in our understanding of mammalian and avian embryonic coronary development have occurred during the last decade, our current knowledge of this topic in humans is limited. Accordingly, the aim of this study was to determine if the development of the human coronary vasculature in humans is like that of other mammals and avians. The data document a progression of events involving mesenchymal cell-containing villi from the proepicardium, establishment of blood islands and a capillary network. The major finding of the study is direct evidence that the capillary plexus associated with spindle cells and erythroblasts invades the base of the aorta to form coronary ostia. A role for the dorsal mesocardium is also indicated by the finding that cells from this region are continuous with the aorta and pulmonary artery. The development of the tunica media of the coronary arteries follows the same base-apex progression as in other species, with the development of branches occurring late in the embryonic period. The fetal period is characterized by 1) growth and a numerical increase in the smallest arterial branches, veins, and venules, 2) innervation of arteries, and 3) inclusion of elastic fibers in the tunica media of the coronary arteries and development of the tunica adventitia. In conclusion, the data demonstrate that the development of the coronary system in humans is similar to that of other mammalian and avian species, and for the first time documents that the formation of the ostia and coronary stems in humans occurs by ingrowth of a vascular plexus and associated cells from the epicardium.

摘要

尽管在过去十年里,我们对哺乳动物和鸟类胚胎期冠状动脉发育的认识取得了长足进展,但目前我们对人类这一主题的了解仍然有限。因此,本研究的目的是确定人类冠状动脉血管系统的发育是否与其他哺乳动物和鸟类相似。数据记录了一系列事件,包括来自心外膜的含间充质细胞绒毛的进展、血岛和毛细血管网络的形成。该研究的主要发现是直接证据表明与纺锤状细胞和成红细胞相关的毛细血管丛侵入主动脉基部以形成冠状动脉口。来自该区域的细胞与主动脉和肺动脉连续这一发现也表明了背侧心内膜的作用。冠状动脉中膜的发育与其他物种一样遵循从基部到顶端的相同进程,分支的发育发生在胚胎期晚期。胎儿期的特征为:1)最小动脉分支、静脉和小静脉的生长及数量增加;2)动脉的神经支配;3)冠状动脉中膜包含弹性纤维以及外膜的发育。总之,数据表明人类冠状动脉系统的发育与其他哺乳动物和鸟类物种相似,并且首次记录了人类冠状动脉口和冠状动脉干的形成是由来自心外膜的血管丛和相关细胞向内生长所致。

相似文献

1
Developmental Progression of the Coronary Vasculature in Human Embryos and Fetuses.
Anat Rec (Hoboken). 2016 Jan;299(1):25-41. doi: 10.1002/ar.23283. Epub 2015 Nov 28.
2
The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart.
Dev Dyn. 1997 Mar;208(3):338-48. doi: 10.1002/(SICI)1097-0177(199703)208:3<338::AID-AJA5>3.0.CO;2-J.
3
Connecting the coronaries: how the coronary plexus develops and is functionalized.
Dev Biol. 2014 Nov 1;395(1):111-9. doi: 10.1016/j.ydbio.2014.08.024. Epub 2014 Aug 28.
4
Formation of the coronary vasculature: a brief review.
Cardiovasc Res. 1996 Feb;31 Spec No:E46-51.
5
Development of the coronary blood supply: changing concepts and current ideas.
Anat Rec. 2002 Aug 15;269(4):198-208. doi: 10.1002/ar.10139.
6
Embryonic development of the proepicardium and coronary vessels.
Int J Dev Biol. 2008;52(2-3):229-36. doi: 10.1387/ijdb.072340ar.
9
Coronary stem development in wild-type and Tbx1 null mouse hearts.
Dev Dyn. 2016 Apr;245(4):445-59. doi: 10.1002/dvdy.24380. Epub 2016 Jan 19.

引用本文的文献

1
Heme oxygenase/carbon monoxide system and development of the heart.
Med Gas Res. 2025 Mar 1;15(1):10-22. doi: 10.4103/mgr.MEDGASRES-D-24-00031. Epub 2024 Sep 25.
2
Clinical Significance of Coronary Arterial Dominance: A Review of the Literature.
J Am Heart Assoc. 2024 May 7;13(9):e032851. doi: 10.1161/JAHA.123.032851. Epub 2024 Apr 19.
3
Developmental Aspects of Cardiac Adaptation to Increased Workload.
J Cardiovasc Dev Dis. 2023 May 10;10(5):205. doi: 10.3390/jcdd10050205.
4
A SOX17-PDGFB signaling axis regulates aortic root development.
Nat Commun. 2022 Jul 13;13(1):4065. doi: 10.1038/s41467-022-31815-1.
5
A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development.
Commun Biol. 2022 Mar 11;5(1):226. doi: 10.1038/s42003-022-03153-x.
6
Living Anatomy of the Pericardial Space: A Guide for Imaging and Interventions.
JACC Clin Electrophysiol. 2021 Dec;7(12):1628-1644. doi: 10.1016/j.jacep.2021.09.008. Epub 2021 Nov 24.
8
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development.
J Cardiovasc Dev Dis. 2020 Mar 7;7(1):8. doi: 10.3390/jcdd7010008.
9
Coronary Artery Development: Progenitor Cells and Differentiation Pathways.
Annu Rev Physiol. 2017 Feb 10;79:1-19. doi: 10.1146/annurev-physiol-022516-033953. Epub 2016 Dec 9.
10
Associations between a Genetic Risk Score for Clinical CAD and Early Stage Lesions in the Coronary Artery and the Aorta.
PLoS One. 2016 Nov 18;11(11):e0166994. doi: 10.1371/journal.pone.0166994. eCollection 2016.

本文引用的文献

1
The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis.
Development. 2014 Dec;141(23):4500-12. doi: 10.1242/dev.113639. Epub 2014 Nov 5.
2
Vasculogenic and hematopoietic cellular progenitors are scattered within the prenatal mouse heart.
Histochem Cell Biol. 2015 Feb;143(2):153-69. doi: 10.1007/s00418-014-1269-z. Epub 2014 Sep 9.
3
Connecting the coronaries: how the coronary plexus develops and is functionalized.
Dev Biol. 2014 Nov 1;395(1):111-9. doi: 10.1016/j.ydbio.2014.08.024. Epub 2014 Aug 28.
4
Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart.
PLoS One. 2013 Nov 21;8(11):e80857. doi: 10.1371/journal.pone.0080857. eCollection 2013.
5
Tbx18 regulates development of the epicardium and coronary vessels.
Dev Biol. 2013 Nov 15;383(2):307-20. doi: 10.1016/j.ydbio.2013.08.019. Epub 2013 Sep 7.
6
Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries.
Cell Res. 2013 Sep;23(9):1075-90. doi: 10.1038/cr.2013.83. Epub 2013 Jun 25.
8
The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion.
Differentiation. 2012 Jul;84(1):117-30. doi: 10.1016/j.diff.2012.05.006. Epub 2012 Jun 17.
10
Signaling during epicardium and coronary vessel development.
Circ Res. 2011 Dec 9;109(12):1429-42. doi: 10.1161/CIRCRESAHA.111.245589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验