Suppr超能文献

视神经损伤后大鼠视网膜中小分子热休克蛋白HspB1/Hsp25和HspB5/αB-晶状体蛋白的诱导与磷酸化

Induction and phosphorylation of the small heat shock proteins HspB1/Hsp25 and HspB5/αB-crystallin in the rat retina upon optic nerve injury.

作者信息

Schmidt Thomas, Fischer Dietmar, Andreadaki Anastasia, Bartelt-Kirbach Britta, Golenhofen Nikola

机构信息

Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.

Department of Experimental Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.

出版信息

Cell Stress Chaperones. 2016 Jan;21(1):167-178. doi: 10.1007/s12192-015-0650-8.

Abstract

Several eye diseases are associated with axonal injury in the optic nerve, which normally leads to degeneration of retinal ganglion cells (RGCs) and subsequently to loss of vision. There is experimental evidence that some members of the small heat shock protein family (HspBs) are upregulated upon optic nerve injury (ONI) in the retina and sufficient to promote RGC survival. These data raise the question as to whether other family members may play a similar role in this context. Here, we performed a comprehensive comparative study comprising all HspBs in an experimental model of ONI. We found that five HspBs were expressed in the adult rat retina at control conditions but only HspB1 and HspB5 were upregulated in response to ONI. Furthermore, HspB1 and HspB5 were constitutively phosphorylated in Müller cells at serine 15 and serine 59, respectively. In RGCs, phosphorylation was stimulated by ONI and occurred at serine 86 of HspB1 and at serine 19 and 45 of HspB5. These data suggest that of all small heat shock proteins, only HspB1 and HspB5 might be of protective value for RGCs after ONI and that this process might be regulated by phosphorylation at serine 86 of HspB1 and serine 19 and serine 45 of HspB5. The molecular targets of phosphoHspB1 and phosphoHspB5 remain to be identified.

摘要

几种眼部疾病与视神经轴突损伤相关,这通常会导致视网膜神经节细胞(RGCs)变性,进而导致视力丧失。有实验证据表明,小热休克蛋白家族(HspBs)的一些成员在视网膜视神经损伤(ONI)后会上调,并且足以促进RGCs存活。这些数据提出了一个问题,即在这种情况下其他家族成员是否可能发挥类似作用。在这里,我们在ONI实验模型中对所有HspBs进行了全面的比较研究。我们发现,在对照条件下,五种HspBs在成年大鼠视网膜中表达,但只有HspB1和HspB5在ONI反应中上调。此外,HspB1和HspB5分别在Müller细胞中丝氨酸15和丝氨酸59处组成性磷酸化。在RGCs中,磷酸化由ONI刺激,发生在HspB1的丝氨酸86以及HspB5的丝氨酸19和45处。这些数据表明,在所有小热休克蛋白中,只有HspB1和HspB5可能在ONI后对RGCs具有保护价值,并且这个过程可能由HspB1的丝氨酸86以及HspB5的丝氨酸19和丝氨酸45处的磷酸化调节。磷酸化HspB1和磷酸化HspB5的分子靶点仍有待确定。

相似文献

2
Upregulation and phosphorylation of HspB1/Hsp25 and HspB5/αB-crystallin after transient middle cerebral artery occlusion in rats.
Cell Stress Chaperones. 2017 Jul;22(4):653-663. doi: 10.1007/s12192-017-0794-9. Epub 2017 Apr 20.
3
HspB5/αB-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons.
Cell Mol Life Sci. 2016 Oct;73(19):3761-75. doi: 10.1007/s00018-016-2219-9. Epub 2016 Apr 16.
5
Analysis of the dominant effects mediated by wild type or R120G mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1).
PLoS One. 2013 Aug 12;8(8):e70545. doi: 10.1371/journal.pone.0070545. eCollection 2013.
6
Rescue of αB Crystallin (HSPB5) Mutants Associated Protein Aggregation by Co-Expression of HSPB5 Partners.
PLoS One. 2015 May 11;10(5):e0126761. doi: 10.1371/journal.pone.0126761. eCollection 2015.

引用本文的文献

1
Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles.
Int J Mol Sci. 2025 Feb 11;26(4):1525. doi: 10.3390/ijms26041525.
3
Small Heat Shock Proteins in Retinal Diseases.
Front Mol Biosci. 2022 Apr 11;9:860375. doi: 10.3389/fmolb.2022.860375. eCollection 2022.
4
The protective role of HSP27 in ocular diseases.
Mol Biol Rep. 2022 Jun;49(6):5107-5115. doi: 10.1007/s11033-022-07222-6. Epub 2022 Feb 25.
6
A specific phosphorylation regulates the protective role of αA-crystallin in diabetes.
JCI Insight. 2018 Feb 22;3(4). doi: 10.1172/jci.insight.97919.
7
The growing world of small heat shock proteins: from structure to functions.
Cell Stress Chaperones. 2017 Jul;22(4):601-611. doi: 10.1007/s12192-017-0787-8. Epub 2017 Mar 31.

本文引用的文献

1
Emerging role for αB-crystallin as a therapeutic agent: pros and cons.
Curr Mol Med. 2015;15(1):47-61. doi: 10.2174/1566524015666150114112853.
2
Role of crystallins in ocular neuroprotection and axonal regeneration.
Prog Retin Eye Res. 2014 Sep;42:145-61. doi: 10.1016/j.preteyeres.2014.06.004. Epub 2014 Jul 4.
3
α-Crystallin protects RGC survival and inhibits microglial activation after optic nerve crush.
Life Sci. 2014 Jan 14;94(1):17-23. doi: 10.1016/j.lfs.2013.10.034. Epub 2013 Nov 10.
4
Regulated structural transitions unleash the chaperone activity of αB-crystallin.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3780-9. doi: 10.1073/pnas.1308898110. Epub 2013 Sep 16.
5
Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons.
Cell Stress Chaperones. 2014 Jan;19(1):145-53. doi: 10.1007/s12192-013-0452-9.
7
Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin.
Nature. 2013 Feb 7;494(7435):90-4. doi: 10.1038/nature11748. Epub 2012 Dec 16.
8
Promoting optic nerve regeneration.
Prog Retin Eye Res. 2012 Nov;31(6):688-701. doi: 10.1016/j.preteyeres.2012.06.005. Epub 2012 Jul 7.
10
The protective and therapeutic function of small heat shock proteins in neurological diseases.
Front Immunol. 2012 May 1;3:74. doi: 10.3389/fimmu.2012.00074. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验