Suppr超能文献

热休克蛋白 B5/αB-晶状体蛋白在 S45 和 S59 处的磷酸化对于保护大鼠海马神经元树突至关重要。

HspB5/αB-crystallin phosphorylation at S45 and S59 is essential for protection of the dendritic tree of rat hippocampal neurons.

机构信息

Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany.

Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany.

出版信息

J Neurochem. 2021 Jun;157(6):2055-2069. doi: 10.1111/jnc.15247. Epub 2020 Dec 5.

Abstract

Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.

摘要

树突棘稀疏导致神经元功能障碍是许多神经退行性疾病的标志,我们之前已经表明,热休克蛋白 B5(HspB5)/αB-晶体蛋白能够在体外增加树突复杂性。本研究的目的是研究这种效应是否在体内存在,如果 HspB5 可以在病理生理条件下对抗树突稀疏,以及 HspB5 的磷酸化在这个过程中的影响。HspB5 和八个抑制或模拟三个磷酸化位点丝氨酸(S)19、S45 和 S59 磷酸化的突变体在培养的大鼠海马神经元中过表达,随后研究树突棘的复杂性。Sholl 分析显示,野生型 HspB5 和突变体 HspB5-AEE 的过表达后,树突棘的复杂性显著提高。其他所有突变体均未显示或仅有轻微影响。为了进行体内研究,应用了胚胎期电穿孔。在胚胎期 E15.5 注射相应的质粒,用电穿孔转染角回 1(CA1)锥体神经元,并在出生后第 15 天分析其基底树突。在体内,HspB5 和 HspB5-AEE 导致总树突长度增加和复杂性增加。最后,在病理生理条件下,即铁缺乏症下,研究了 HspB5 的树突效应,据报道铁缺乏症会导致树突稀疏。HspB5 和 HspB5-AEE 但不是非磷酸化突变体 HspB5-AAA 显著对抗了树突稀疏。因此,我们的数据表明,在神经退行性疾病中上调和选择性磷酸化 HspB5 可能有助于维持树突形态并对抗神经元功能障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验