Suppr超能文献

多位点核DNA和线粒体DNA分析揭示的两种虾虎鱼物种(细纹鳍虾虎鱼和白纹鳍虾虎鱼)的物种形成

Speciation of two gobioid species, Pterogobius elapoides and Pterogobius zonoleucus revealed by multi-locus nuclear and mitochondrial DNA analyses.

作者信息

Akishinonomiya Fumihito, Ikeda Yuji, Aizawa Masahiro, Nakagawa So, Umehara Yumi, Yonezawa Takahiro, Mano Shuhei, Hasegawa Masami, Nakabo Tetsuji, Gojobori Takashi

机构信息

The Imperial Residence, 1-1 Chiyoda, Chiyoda-ku, Tokyo 100-0001, Japan.

The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Tokyo University of Agriculture, 1737 Funako, Atsugi-shi, Kanagawa 243-0034, Japan.

出版信息

Gene. 2016 Feb 1;576(2 Pt 1):593-602. doi: 10.1016/j.gene.2015.10.014. Epub 2015 Oct 28.

Abstract

To understand how geographical differentiation of gobioid fish species led to speciation, two populations of the Pacific Ocean and the Sea of Japan for each of the two gobioid species, Pterogobius elapoides and Pterogobius zonoleucus, were studied in both morphological and molecular features. Analyzing mitochondrial genes, Akihito et al. (2008) suggested that P. zonoleucus does not form a monophyletic clade relative to P. elapoides, indicating that "Sea of Japan P. zonoleucus" and P. elapoides form a clade excluding "Pacific P. zonoleucus" as an outgroup. Because morphological classification clearly distinguish these two species and a gene tree may differ from a population tree, we examined three nuclear genes, S7RP, RAG1, and TBR1, in this work, in order to determine whether nuclear and mitochondrial trees are concordant, thus shedding light on the evolutionary history of this group of fishes. Importantly, nuclear trees were based on exactly the same individuals that were used for the previously published mtDNA trees. The tree based on RAG1 exon sequences suggested a closer relationship of P. elapoides with "Sea of Japan P. zonoleucus", which was in agreement with the mitochondrial tree. In contrast, S7RP and TBR1 introns recovered a monophyletic P. zonoleucus. If the mitochondrial tree represents the population tree in which P. elapoides evolved from "Sea of Japan P. zonoleucus", the population size of P. elapoides is expected to be smaller than that of "Sea of Japan P. zonoleucus". This is because a smaller population of the new species is usually differentiated from a larger population of the ancestral species when the speciation occurred. However, we found no evidence of such a small population size during the evolution of P. elapoides. Therefore, we conclude that the monophyletic P. zonoleucus as suggested by S7RP and TBR1 most likely represents the population tree, which is consistent with the morphological classification. In this case, it is possible that the incongruent mitochondrial and RAG1 trees are either due to incomplete lineage sorting of ancestral polymorphisms or to introgression by hybridization. Because of a smaller effective population size of mitochondria compared with nuclear genes, the introgression might be a more likely scenario in explaining the incongruent mitochondrial tree than the incomplete lineage sorting. Because of smaller effective population size of "Sea of Japan P. zonoleucus" than that of P. elapoides, the direction of the introgression was likely to be from the latter to the former. This evolutionary work of the two gobioid species highlights the need of analyzing multiple gene trees for both nuclear and mitochondrial genes as well as scrutinization of morphological characteristics to obtain a population tree representing the organismal evolutionary history.

摘要

为了解虾虎鱼物种的地理分化如何导致物种形成,对两种虾虎鱼,即细纹鳍虾虎鱼(Pterogobius elapoides)和白带鳍虾虎鱼(Pterogobius zonoleucus)的太平洋和日本海的两个种群进行了形态学和分子特征研究。通过分析线粒体基因,秋仁等人(2008年)指出,相对于细纹鳍虾虎鱼,白带鳍虾虎鱼并不构成一个单系类群,这表明“日本海白带鳍虾虎鱼”和细纹鳍虾虎鱼形成一个类群,而将“太平洋白带鳍虾虎鱼”作为外类群排除在外。由于形态学分类能够明确区分这两个物种,并且基因树可能与种群树不同,因此在本研究中,我们检测了三个核基因,即S7RP、RAG1和TBR1,以确定核基因树和线粒体基因树是否一致,从而阐明这组鱼类的进化历史。重要的是,核基因树是基于与先前发表的线粒体DNA树所使用的完全相同的个体构建的。基于RAG1外显子序列的树状图表明细纹鳍虾虎鱼与“日本海白带鳍虾虎鱼”的关系更为密切,这与线粒体树状图一致。相反,S7RP和TBR1内含子则显示白带鳍虾虎鱼为单系类群。如果线粒体树代表细纹鳍虾虎鱼从“日本海白带鳍虾虎鱼”进化而来的种群树,那么细纹鳍虾虎鱼的种群大小预计会小于“日本海白带鳍虾虎鱼”。这是因为在物种形成时,新物种的较小种群通常是从祖先物种的较大种群中分化出来的。然而,在细纹鳍虾虎鱼的进化过程中,我们没有发现这种小种群大小的证据。因此,我们得出结论,S7RP和TBR1所显示的白带鳍虾虎鱼单系类群最有可能代表种群树,这与形态学分类一致。在这种情况下,线粒体树和RAG1树不一致的原因可能是祖先多态性的不完全谱系分选,或者是杂交渗入。由于线粒体的有效种群大小比核基因小,因此在解释不一致的线粒体树时,杂交渗入可能比不完全谱系分选更有可能。由于“日本海白带鳍虾虎鱼”的有效种群大小小于细纹鳍虾虎鱼,杂交渗入的方向可能是从细纹鳍虾虎鱼到“日本海白带鳍虾虎鱼”。这两种虾虎鱼的进化研究突出了分析核基因和线粒体基因的多个基因树以及仔细审查形态特征以获得代表生物进化历史的种群树的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验