Suppr超能文献

从无肺原始脊椎动物进化出肺呼吸。

Evolution of lung breathing from a lungless primitive vertebrate.

作者信息

Hoffman M, Taylor B E, Harris M B

机构信息

Department of Veterinary Medicine, University of Alaska Fairbanks, United States.

Institute of Arctic Biology, University of Alaska Fairbanks, United States; Department of Biology and Wildlife, University of Alaska Fairbanks, United States.

出版信息

Respir Physiol Neurobiol. 2016 Apr;224:11-6. doi: 10.1016/j.resp.2015.09.016. Epub 2015 Oct 21.

Abstract

Air breathing was critical to the terrestrial radiation and evolution of tetrapods and arose in fish. The vertebrate lung originated from a progenitor structure present in primitive boney fish. The origin of the neural substrates, which are sensitive to metabolically produced CO2 and which rhythmically activate respiratory muscles to match lung ventilation to metabolic demand, is enigmatic. We have found that a distinct periodic centrally generated rhythm, described as "cough" and occurring in lamprey in vivo and in vitro, is modulated by central sensitivity to CO2. This suggests that elements critical for the evolution of breathing in tetrapods, were present in the most basal vertebrate ancestors prior to the evolution of the lung. We propose that the evolution of breathing in all vertebrates occurred through exaptations derived from these critical basal elements.

摘要

空气呼吸对于四足动物的陆地辐射和进化至关重要,且起源于鱼类。脊椎动物的肺源自原始硬骨鱼中存在的一种祖先进化结构。对代谢产生的二氧化碳敏感且有节律地激活呼吸肌以使肺通气与代谢需求相匹配的神经基质的起源尚不清楚。我们发现,一种独特的周期性中枢产生的节律,被描述为“咳嗽”,在七鳃鳗体内和体外均有发生,它受中枢对二氧化碳的敏感性调节。这表明,在肺进化之前,四足动物呼吸进化的关键要素就已存在于最原始的脊椎动物祖先中。我们提出,所有脊椎动物呼吸的进化都是通过源自这些关键基础要素的适应性改变而发生的。

相似文献

1
Evolution of lung breathing from a lungless primitive vertebrate.
Respir Physiol Neurobiol. 2016 Apr;224:11-6. doi: 10.1016/j.resp.2015.09.016. Epub 2015 Oct 21.
2
Quest for breathing: proliferation of alveolar type 1 cells.
Histochem Cell Biol. 2022 Apr;157(4):393-401. doi: 10.1007/s00418-022-02073-5. Epub 2022 Jan 20.
3
The neural control of respiration in lampreys.
Respir Physiol Neurobiol. 2016 Dec;234:14-25. doi: 10.1016/j.resp.2016.08.007. Epub 2016 Aug 22.
4
The lamprey respiratory network: Some evolutionary aspects.
Respir Physiol Neurobiol. 2021 Dec;294:103766. doi: 10.1016/j.resp.2021.103766. Epub 2021 Jul 28.
5
Neural mechanisms underlying respiratory rhythm generation in the lamprey.
Respir Physiol Neurobiol. 2016 Apr;224:17-26. doi: 10.1016/j.resp.2014.09.003. Epub 2014 Sep 16.
8
[Origin and evolution of the respiratory tract in vertebrates].
Rev Mal Respir. 2002 Oct;19(5 Pt 1):601-15.
9
Central control of air breathing in fishes.
Acta Histochem. 2018 Oct;120(7):691-700. doi: 10.1016/j.acthis.2018.08.014. Epub 2018 Aug 30.

引用本文的文献

1
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
3
Revisiting the two rhythm generators for respiration in lampreys.
Front Neuroanat. 2024 Jan 5;17:1270535. doi: 10.3389/fnana.2023.1270535. eCollection 2023.
4
Quest for breathing: proliferation of alveolar type 1 cells.
Histochem Cell Biol. 2022 Apr;157(4):393-401. doi: 10.1007/s00418-022-02073-5. Epub 2022 Jan 20.
5
Voice modulatory cues to structure across languages and species.
Philos Trans R Soc Lond B Biol Sci. 2021 Dec 20;376(1840):20200393. doi: 10.1098/rstb.2020.0393. Epub 2021 Nov 1.
6
Morphological diversity of acoustic and electric communication systems of mochokid catfish.
J Comp Neurol. 2021 Jun;529(8):1787-1809. doi: 10.1002/cne.25057. Epub 2020 Nov 20.
7
Development of central respiratory control in anurans: The role of neurochemicals in the emergence of air-breathing and the hypoxic response.
Respir Physiol Neurobiol. 2019 Dec;270:103266. doi: 10.1016/j.resp.2019.103266. Epub 2019 Aug 10.
8
Buccal rhythmogenesis and CO sensitivity in Lithobates catesbeianus tadpole brainstems across metamorphosis.
Respir Physiol Neurobiol. 2019 Oct;268:103251. doi: 10.1016/j.resp.2019.103251. Epub 2019 Jul 3.
9
Respiratory motoneuron properties during the transition from gill to lung breathing in the American bullfrog.
Am J Physiol Regul Integr Comp Physiol. 2019 Mar 1;316(3):R281-R297. doi: 10.1152/ajpregu.00303.2018. Epub 2019 Jan 2.
10
Is the Capacity for Vocal Learning in Vertebrates Rooted in Fish Schooling Behavior?
Evol Biol. 2018;45(4):359-373. doi: 10.1007/s11692-018-9457-8. Epub 2018 Jun 13.

本文引用的文献

1
Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.
Compr Physiol. 2013 Apr;3(2):849-915. doi: 10.1002/cphy.c120003.
2
Neuronal mechanisms of respiratory pattern generation are evolutionary conserved.
J Neurosci. 2013 May 22;33(21):9104-12. doi: 10.1523/JNEUROSCI.0299-13.2013.
3
Chronic, but not acute, ethanol exposure impairs central hypercapnic ventilatory drive in bullfrog tadpoles.
Respir Physiol Neurobiol. 2013 Feb 1;185(3):533-42. doi: 10.1016/j.resp.2012.11.006. Epub 2012 Nov 19.
4
Bilateral connectivity in the brainstem respiratory networks of lampreys.
J Comp Neurol. 2012 May 1;520(7):1442-56. doi: 10.1002/cne.22804.
5
Perspective on the human cough reflex.
Cough. 2011 Nov 10;7:10. doi: 10.1186/1745-9974-7-10.
6
The phylogeny of central chemoreception.
Respir Physiol Neurobiol. 2010 Oct 31;173(3):195-200. doi: 10.1016/j.resp.2010.05.022. Epub 2010 Jun 2.
7
Lung respiratory rhythm and pattern generation in the bullfrog: role of neurokinin-1 and mu-opioid receptors.
J Comp Physiol B. 2009 Jul;179(5):579-92. doi: 10.1007/s00360-009-0339-3. Epub 2009 Jan 30.
8
The cough reflex in animals: relevance to human cough research.
Lung. 2008;186 Suppl 1(Suppl 1):S23-8. doi: 10.1007/s00408-007-9054-6. Epub 2007 Dec 15.
9
Respiratory rhythms generated in the lamprey rhombencephalon.
Neuroscience. 2007 Aug 10;148(1):279-93. doi: 10.1016/j.neuroscience.2007.05.023. Epub 2007 Jul 6.
10
Ontogeny of central CO2 chemoreception: chemosensitivity in the ventral medulla of developing bullfrogs.
Am J Physiol Regul Integr Comp Physiol. 2003 Dec;285(6):R1461-72. doi: 10.1152/ajpregu.00256.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验