Department of Pediatrics, Université Laval and Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec City, Québec , Canada.
Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York University Langone Medical Center , New York, New York.
Am J Physiol Regul Integr Comp Physiol. 2019 Mar 1;316(3):R281-R297. doi: 10.1152/ajpregu.00303.2018. Epub 2019 Jan 2.
Amphibian respiratory development involves a dramatic metamorphic transition from gill to lung breathing and coordination of distinct motor outputs. To determine whether the emergence of adult respiratory motor patterns was associated with similarly dramatic changes in motoneuron (MN) properties, we characterized the intrinsic electrical properties of American bullfrog trigeminal MNs innervating respiratory muscles comprising the buccal pump. In premetamorphic tadpoles (TK stages IX-XVIII) and adult frogs, morphometric analyses and whole cell recordings were performed in trigeminal MNs identified by fluorescent retrograde labeling. Based on the amplitude of the depolarizing sag induced by hyperpolarizing voltage steps, two MN subtypes (I and II) were identified in tadpoles and adults. Compared with type II MNs, type I MNs had larger sag amplitudes (suggesting a larger hyperpolarization-activated inward current), greater input resistance, lower rheobase, hyperpolarized action potential threshold, steeper frequency-current relationships, and fast firing rates and received fewer excitatory postsynaptic currents. Postmetamorphosis, type I MNs exhibited similar sag, enhanced postinhibitory rebound, and increased action potential amplitude with a smaller-magnitude fast afterhyperpolarization. Compared with tadpoles, type II MNs from frogs received higher-frequency, larger-amplitude excitatory postsynaptic currents. Input resistance decreased and rheobase increased postmetamorphosis in all MNs, concurrent with increased soma area and hyperpolarized action potential threshold. We suggest that type I MNs are likely recruited in response to smaller, buccal-related synaptic inputs as well as larger lung-related inputs, whereas type II MNs are likely recruited in response to stronger synaptic inputs associated with larger buccal breaths, lung breaths, or nonrespiratory behaviors involving powerful muscle contractions.
两栖动物的呼吸发育涉及从鳃呼吸到肺呼吸的剧烈变态过渡,以及协调不同的运动输出。为了确定成年呼吸运动模式的出现是否与运动神经元(MN)特性的类似剧烈变化有关,我们对支配包括口咽泵在内的呼吸肌的三叉神经 MN 的内在电特性进行了特征描述。在未变态的蝌蚪(TK 阶段 IX-XVIII)和成年青蛙中,通过荧光逆行标记鉴定三叉神经 MN 进行形态计量分析和全细胞记录。基于超极化电压阶跃引起的去极化 sag 的幅度,在蝌蚪和成年个体中鉴定出两种 MN 亚型(I 和 II)。与 II 型 MN 相比,I 型 MN 的 sag 幅度更大(表明更大的超极化激活内向电流)、输入电阻更大、基强度更低、动作电位阈值更负、频率-电流关系更陡、放电频率更高,并且接收的兴奋性突触后电流更少。变态后,I 型 MN 表现出相似的 sag、增强的后抑制反弹和更大的动作电位幅度,同时具有较小幅度的快速后超极化。与蝌蚪相比,来自青蛙的 II 型 MN 接收更高频率、更大幅度的兴奋性突触后电流。所有 MN 的输入电阻在变态后降低,基强度增加,同时伴随着体表面积的增加和动作电位阈值的超极化。我们认为,I 型 MN 可能是在响应较小的、与口咽相关的突触输入以及较大的与肺相关的输入时被募集,而 II 型 MN 可能是在响应与较大的口咽呼吸、肺呼吸或涉及强大肌肉收缩的非呼吸行为相关的更强的突触输入时被募集。