Suppr超能文献

使用图像不变量对秀丽隐杆线虫的运动频率进行无分割测量。

Segmentation-free measurement of locomotor frequency in Caenorhabditis elegans using image invariants.

机构信息

Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA.

Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

G3 (Bethesda). 2024 Oct 7;14(10). doi: 10.1093/g3journal/jkae170.

Abstract

An animal's locomotor rate is an important indicator of its motility. In studies of the nematode Caenorhabditis elegans (C. elegans), assays of the frequency of body bending waves have often been used to discern the effects of mutations, drugs, or aging. Traditional manual methods for measuring locomotor frequency are low in throughput and subject to human error. Most current automated methods depend on image segmentation, which requires high image quality and is prone to errors. Here, we describe an algorithm for automated estimation of C. elegans locomotor frequency using image invariants, i.e. shape-based parameters that are independent of object translation, rotation, and scaling. For each video frame, the method calculates a combination of 8 Hu's moment invariants and a set of maximally stable extremal regions (MSER) invariants. The algorithm then calculates the locomotor frequency by computing the autocorrelation of the time sequence of the invariant ensemble. Results of our method show excellent agreement with manual or segmentation-based results over a wide range of frequencies. We show that compared to a segmentation-based method that analyzes a worm's shape and a method based on video covariance, our technique is more robust to low image quality and background noise. We demonstrate the system's capabilities by testing the effects of serotonin and serotonin pathway mutations on C. elegans locomotor frequency.

摘要

动物的运动速度是其运动能力的一个重要指标。在秀丽隐杆线虫(C. elegans)的研究中,经常使用体弯曲波频率的测定来辨别突变、药物或衰老的影响。传统的手动测量运动频率的方法通量低,容易出错。目前大多数自动化方法都依赖于图像分割,这需要高质量的图像,并且容易出错。在这里,我们描述了一种使用图像不变量(即与对象平移、旋转和缩放无关的基于形状的参数)自动估计秀丽隐杆线虫运动频率的算法。对于每个视频帧,该方法计算 8 个 Hu 矩不变量和一组最大稳定极值区域(MSER)不变量的组合。然后,该算法通过计算不变量集合的时间序列的自相关来计算运动频率。我们的方法的结果与手动或基于分割的结果在很宽的频率范围内显示出极好的一致性。我们表明,与分析蠕虫形状的基于分割的方法和基于视频协方差的方法相比,我们的技术对低图像质量和背景噪声更具鲁棒性。我们通过测试血清素和血清素途径突变对秀丽隐杆线虫运动频率的影响来展示该系统的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49c5/11849490/75f433f16a2b/jkae170f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验