Keller Timothy A, Just Marcel Adam
Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.
Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.
Neuroimage. 2016 Jan 15;125:256-266. doi: 10.1016/j.neuroimage.2015.10.015. Epub 2015 Oct 20.
Recent findings with both animals and humans suggest that decreases in microscopic movements of water in the hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other regions involved in learning. We collected both diffusion-weighted images and fMRI data before and after humans performed a 45min spatial route-learning task. Relative to a control group with equal practice time, there was decreased diffusivity in the posterior-dorsal dentate gyrus of the left hippocampus in the route-learning group accompanied by increased synchronization of fMRI-measured BOLD signal between this region and cortical areas, and by changes in behavioral performance. These concurrent changes characterize the multidimensionality of neuroplasticity as it enables human spatial learning.
近期对动物和人类的研究结果表明,海马体中水分子微观运动的减少反映了学习引起的短期神经可塑性。在此,我们研究这种神经可塑性结构变化是否同时改变海马体与其他参与学习的区域之间的功能连接。我们在人类执行45分钟空间路径学习任务前后收集了扩散加权图像和功能磁共振成像数据。与具有相同练习时间的对照组相比,路径学习组左海马体后背部齿状回的扩散率降低,同时该区域与皮质区域之间功能磁共振成像测量的血氧水平依赖(BOLD)信号同步性增加,且行为表现发生了变化。这些同时出现的变化体现了神经可塑性在支持人类空间学习时的多维度特征。