Friedman Naama, Malovani Cfir, Perets Inbar, Kenin Etai, Bernstein-Eliav Michal, Tavor Ido
Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
J Neurosci. 2025 Jun 11;45(24):e1152242025. doi: 10.1523/JNEUROSCI.1152-24.2025.
How does our brain transform when we encounter a new task? To fully answer this question, comparing brain states before and after learning may not be enough, but rather an ongoing, continuous monitoring of brain changes during learning is required. While such continuous examinations of functional learning-induced changes are widely available using functional magnetic resonance imaging (MRI), a continuous investigation of diffusion-detected brain modifications during learning is yet to be reported. Here, we continuously acquire diffusion MRI images during task performance. We then compute the mean diffusivity (MD) using a sliding-window approach, resulting in a continuous measure of diffusivity changes throughout learning. We demonstrate the utility of this method on a motor sequence learning (finger tapping) task ( = 58, 30 females). MD decrease was detected in task-related brain regions, including the parahippocampal gyrus (PHG), hippocampus, inferior temporal gyrus, and cerebellum. Analysis of the temporal patterns of decrease revealed a rapid MD reduction in the right temporal gyrus after 11 min of training, with additional decrease in the right PHG and left cerebellum after 22 min. We further computed "neuroplasticity networks" of brain areas showing similar change patterns and detected similarities between these networks and canonical functional connectivity networks. Our findings offer novel insights on the spatiotemporal dynamics of diffusion-detected neuroplasticity by demonstrating continuous modifications during the encoding phase of learning itself rather than comparing pre- and postlearning states.
当我们遇到一项新任务时,我们的大脑会如何变化?要全面回答这个问题,仅比较学习前后的大脑状态可能还不够,而是需要在学习过程中对大脑变化进行持续、不间断的监测。虽然使用功能磁共振成像(MRI)可以广泛地对功能学习诱导的变化进行这种连续检查,但尚未有关于在学习过程中对扩散检测到的大脑变化进行连续研究的报道。在这里,我们在任务执行过程中持续获取扩散MRI图像。然后,我们使用滑动窗口方法计算平均扩散率(MD),从而得到整个学习过程中扩散率变化的连续测量值。我们在一项运动序列学习(手指敲击)任务(n = 58,30名女性)中展示了这种方法的实用性。在与任务相关的脑区,包括海马旁回(PHG)、海马体、颞下回和小脑中检测到MD降低。对降低的时间模式分析显示,训练11分钟后右侧颞回的MD迅速降低,22分钟后右侧PHG和左侧小脑进一步降低。我们进一步计算了显示相似变化模式的脑区的“神经可塑性网络”,并检测到这些网络与典型功能连接网络之间的相似性。我们的研究结果通过展示学习本身编码阶段的连续变化,而不是比较学习前和学习后的状态,为扩散检测到的神经可塑性的时空动态提供了新的见解。