Department of Ophthalmology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15216 ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15219.
Department of Ophthalmology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15216 ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15219 ; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15260.
eNeuro. 2015 Oct 8;2(5). doi: 10.1523/ENEURO.0077-15.2015. eCollection 2015 Sep.
Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer "biohybrid" sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome.
成年哺乳动物中枢神经系统神经元在损伤后常发生退行性变,导致神经功能丧失。在视觉系统中,视网膜或视神经损伤常导致视网膜神经节细胞轴突退行性变和不可逆转的视力丧失。中枢神经系统轴突退行性变与损伤后的固有免疫反应密切相关,导致组织破坏性炎症和瘢痕形成。细胞外基质(ECM)技术可以减少炎症,同时增加功能组织重塑,减少瘢痕形成,在包括周围神经系统在内的各种组织和器官中。然而,将 ECM 技术应用于中枢神经系统损伤的研究在视觉系统中受到限制,几乎没有研究。在这里,我们讨论了从胎儿中枢神经系统特异性 ECM(如胎猪脑、视网膜和视神经)和胎儿非中枢神经系统特异性 ECM(如胎猪膀胱)中提取 ECM 的进展,以及使用组织特异性 ECM 治疗视网膜或视神经损伤的两种平台的潜力。第一个平台是 ECM 水凝胶,可以作为球后、眼周甚至眼内注射。第二个平台是 ECM 水凝胶和聚合物“生物杂交”片,可以很容易地成型并包裹在神经周围。这两个平台都可以在机械和生化方面进行调整,以递送电活性因子,如神经营养因子、免疫治疗剂或干细胞。由于临床中枢神经系统治疗通常使用一般的抗炎药物,这些药物可以减少组织破坏性炎症,但也会抑制组织修复性免疫系统功能,因此基于组织特异性 ECM 的设备可能会通过提供天然衍生的、生物相容的和高度可转化的平台来满足重要需求,这些平台可以调节固有免疫反应,促进积极的功能结果。