Suppr超能文献

利用组织工程支架上固定的导向线索实现视网膜神经节细胞极化。

Retinal ganglion cell polarization using immobilized guidance cues on a tissue-engineered scaffold.

作者信息

Kador Karl E, Alsehli Haneen S, Zindell Allison N, Lau Lung W, Andreopoulos Fotios M, Watson Brant D, Goldberg Jeffrey L

机构信息

Shiley Eye Center and Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA; Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, FL 33136, USA.

Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, FL 33136, USA; Department of Biomedical Sciences, Barry University, Miami Shores, FL 33161, USA.

出版信息

Acta Biomater. 2014 Dec;10(12):4939-4946. doi: 10.1016/j.actbio.2014.08.032. Epub 2014 Sep 4.

Abstract

Cell transplantation therapies to treat diseases related to dysfunction of retinal ganglion cells (RGCs) are limited in part by an inability to navigate to the optic nerve head within the retina. During development, RGCs are guided by a series of neurotrophic factors and guidance cues; however, these factors and their receptors on the RGCs are developmentally regulated and often not expressed during adulthood. Netrin-1 is a guidance factor capable of guiding RGCs in culture and relevant to guiding RGC axons toward the optic nerve head in vivo. Here we immobilized Netrin-1 using UV-initiated crosslinking to form a gradient capable of guiding the axonal growth of RGCs on a radial electrospun scaffold. Netrin-gradient scaffolds promoted both the percentage of RGCs polarized with a single axon, and also the percentage of cells polarized toward the scaffold center, from 31% to 52%. Thus, an immobilized protein gradient on a radial electrospun scaffold increases RGC axon growth in a direction consistent with developmental optic nerve head guidance, and may prove beneficial for use in cell transplant therapies for the treatment of glaucoma and other optic neuropathies.

摘要

用于治疗与视网膜神经节细胞(RGCs)功能障碍相关疾病的细胞移植疗法,部分受限原因在于无法在视网膜内导航至视神经乳头。在发育过程中,RGCs受一系列神经营养因子和导向线索引导;然而,这些因子及其在RGCs上的受体在发育过程中受到调控,在成年期通常不表达。Netrin-1是一种能够在培养中引导RGCs的导向因子,并且与在体内引导RGC轴突朝向视神经乳头相关。在此,我们利用紫外线引发的交联固定Netrin-1,以形成能够在径向电纺支架上引导RGCs轴突生长的梯度。Netrin梯度支架既提高了具有单个轴突极化的RGCs的百分比,也提高了朝着支架中心极化的细胞百分比,从31%提高到52%。因此,径向电纺支架上固定的蛋白质梯度可使RGC轴突朝着与发育性视神经乳头引导一致的方向生长增加,并且可能证明对用于治疗青光眼和其他视神经病变的细胞移植疗法有益。

相似文献

1
Retinal ganglion cell polarization using immobilized guidance cues on a tissue-engineered scaffold.
Acta Biomater. 2014 Dec;10(12):4939-4946. doi: 10.1016/j.actbio.2014.08.032. Epub 2014 Sep 4.
2
Heparan sulfate regulates intraretinal axon pathfinding by retinal ganglion cells.
Invest Ophthalmol Vis Sci. 2011 Aug 22;52(9):6671-9. doi: 10.1167/iovs.11-7559.
4
Tissue engineering the retinal ganglion cell nerve fiber layer.
Biomaterials. 2013 Jun;34(17):4242-50. doi: 10.1016/j.biomaterials.2013.02.027. Epub 2013 Mar 11.
5
Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice.
J Neurosci. 1999 Nov 15;19(22):9900-12. doi: 10.1523/JNEUROSCI.19-22-09900.1999.
10
NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System.
PLoS One. 2015 Oct 21;10(10):e0141290. doi: 10.1371/journal.pone.0141290. eCollection 2015.

引用本文的文献

1
Retinal Ganglion Cell Replacement in Glaucoma Therapy: A Narrative Review.
J Clin Med. 2024 Nov 27;13(23):7204. doi: 10.3390/jcm13237204.
2
Tissue engineering strategies for ocular regeneration; from bench to the bedside.
Heliyon. 2024 Oct 15;10(20):e39398. doi: 10.1016/j.heliyon.2024.e39398. eCollection 2024 Oct 30.
3
The application of retinal organoids in ophthalmic regenerative medicine: A mini-review.
Regen Ther. 2024 Jun 30;26:382-386. doi: 10.1016/j.reth.2024.06.013. eCollection 2024 Jun.
5
Extracellular-Matrix Mechanics Regulate the Ocular Physiological and Pathological Activities.
J Ophthalmol. 2023 Jul 22;2023:7626920. doi: 10.1155/2023/7626920. eCollection 2023.
6
Periadventitial β-aminopropionitrile-loaded nanofibers reduce fibrosis and improve arteriovenous fistula remodeling in rats.
Front Cardiovasc Med. 2023 Feb 28;10:1124106. doi: 10.3389/fcvm.2023.1124106. eCollection 2023.
7
Bioengineering strategies for restoring vision.
Nat Biomed Eng. 2023 Apr;7(4):387-404. doi: 10.1038/s41551-021-00836-4. Epub 2022 Jan 31.
9
Regeneration of Ganglion Cells for Vision Restoration in Mammalian Retinas.
Front Cell Dev Biol. 2021 Oct 4;9:755544. doi: 10.3389/fcell.2021.755544. eCollection 2021.
10
Retinal Organoids: Cultivation, Differentiation, and Transplantation.
Front Cell Neurosci. 2021 Jun 28;15:638439. doi: 10.3389/fncel.2021.638439. eCollection 2021.

本文引用的文献

1
Integrins and cAMP mediate netrin-induced growth cone collapse.
Brain Res. 2013 Nov 6;1537:46-58. doi: 10.1016/j.brainres.2013.08.045. Epub 2013 Aug 31.
3
Biofunctionalization of multiwalled carbon nanotubes by irradiation of electropolymerized poly(pyrrole-diazirine) films.
Chemistry. 2013 Jul 15;19(29):9639-43. doi: 10.1002/chem.201300873. Epub 2013 Jun 10.
4
A tunable synthetic hydrogel system for culture of retinal ganglion cells and amacrine cells.
Acta Biomater. 2013 Aug;9(8):7622-9. doi: 10.1016/j.actbio.2013.04.048. Epub 2013 May 3.
5
Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation.
Cell Transplant. 2014;23(7):855-72. doi: 10.3727/096368913X667024. Epub 2013 Apr 29.
6
Scaffolds and stem cells: delivery of cell transplants for retinal degenerations.
Expert Rev Ophthalmol. 2012 Oct 1;7(5):459-470. doi: 10.1586/eop.12.56.
7
Tissue engineering the retinal ganglion cell nerve fiber layer.
Biomaterials. 2013 Jun;34(17):4242-50. doi: 10.1016/j.biomaterials.2013.02.027. Epub 2013 Mar 11.
10
Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth.
J Neurosci. 2012 May 30;32(22):7734-44. doi: 10.1523/JNEUROSCI.5288-11.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验