Suppr超能文献

白细胞介素-4在清除鼠柠檬酸杆菌和大肠杆菌感染过程中保护线粒体免受肿瘤坏死因子α和干扰素γ诱导的损伤。

IL-4 Protects the Mitochondria Against TNFα and IFNγ Induced Insult During Clearance of Infection with Citrobacter rodentium and Escherichia coli.

作者信息

Maiti Arpan K, Sharba Sinan, Navabi Nazanin, Forsman Huamei, Fernandez Harvey R, Lindén Sara K

机构信息

Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

出版信息

Sci Rep. 2015 Oct 20;5:15434. doi: 10.1038/srep15434.

Abstract

Citrobacter rodentium is a murine pathogen that serves as a model for enteropathogenic Escherichia coli. C. rodentium infection reduced the quantity and activity of mitochondrial respiratory complexes I and IV, as well as phosphorylation capacity, mitochondrial transmembrane potential and ATP generation at day 10, 14 and 19 post infection. Cytokine mRNA quantification showed increased levels of IFNγ, TNFα, IL-4, IL-6, and IL-12 during infection. The effects of adding these cytokines, C. rodentium and E. coli were hence elucidated using an in vitro colonic mucosa. Both infection and TNFα, individually and combined with IFNγ, decreased complex I and IV enzyme levels and mitochondrial function. However, IL-4 reversed these effects, and IL-6 protected against loss of complex IV. Both in vivo and in vitro, the dysfunction appeared caused by nitric oxide-generation, and was alleviated by an antioxidant targeting mitochondria. IFNγ -/- mice, containing a similar pathogen burden but higher IL-4 and IL-6, displayed no loss of any of the four complexes. Thus, the cytokine environment appears to be a more important determinant of mitochondrial function than direct actions of the pathogen. As IFNγ and TNFα levels increase during clearance of infection, the concomitant increase in IL-4 and IL-6 protects mitochondrial function.

摘要

鼠柠檬酸杆菌是一种鼠类病原体,可作为肠致病性大肠杆菌的模型。在感染后第10天、14天和19天,鼠柠檬酸杆菌感染降低了线粒体呼吸复合物I和IV的数量和活性,以及磷酸化能力、线粒体跨膜电位和ATP生成。细胞因子mRNA定量显示感染期间IFNγ、TNFα、IL-4、IL-6和IL-12水平升高。因此,使用体外结肠黏膜阐明了添加这些细胞因子、鼠柠檬酸杆菌和大肠杆菌的影响。感染以及TNFα单独作用或与IFNγ联合作用均降低了复合物I和IV的酶水平以及线粒体功能。然而,IL-4逆转了这些作用,并且IL-6可防止复合物IV的丧失。在体内和体外,功能障碍似乎是由一氧化氮生成引起的,并且通过靶向线粒体的抗氧化剂得以缓解。IFNγ -/-小鼠虽然病原体负荷相似,但IL-4和IL-6水平较高,其四种复合物均未丧失。因此,细胞因子环境似乎比病原体的直接作用更能决定线粒体功能。随着感染清除过程中IFNγ和TNFα水平升高,IL-4和IL-6的同时增加可保护线粒体功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7039/4613366/c52f61ad8bc2/srep15434-f1.jpg

相似文献

3
The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner.
J Microbiol Biotechnol. 2016 Jul 28;26(7):1333-40. doi: 10.4014/jmb.1602.02004.
6
Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis.
Am J Physiol Gastrointest Liver Physiol. 2015 Nov 1;309(9):G730-42. doi: 10.1152/ajpgi.00006.2015. Epub 2015 Sep 3.
7
Citrobacter rodentium infection causes iNOS-independent intestinal epithelial dysfunction in mice.
Can J Physiol Pharmacol. 2006 Dec;84(12):1301-12. doi: 10.1139/y06-086.
8
The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentium-induced colitis.
Gastroenterology. 2004 Nov;127(5):1463-73. doi: 10.1053/j.gastro.2004.08.022.

引用本文的文献

1
In vitro fish mucosal surfaces producing mucin as a model for studying host-pathogen interactions.
PLoS One. 2024 Aug 9;19(8):e0308609. doi: 10.1371/journal.pone.0308609. eCollection 2024.
2
IFNγ causes mitochondrial dysfunction and oxidative stress in myositis.
Nat Commun. 2024 Jun 26;15(1):5403. doi: 10.1038/s41467-024-49460-1.
3
Inhibitory Effect of and on Citrobacter Colitis in Mice.
Microorganisms. 2024 Apr 3;12(4):730. doi: 10.3390/microorganisms12040730.
4
Interaction between Butyrate and Tumor Necrosis Factor α in Primary Rat Colonocytes.
Biomolecules. 2023 Jan 30;13(2):258. doi: 10.3390/biom13020258.
7
Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential.
Int J Mol Sci. 2022 Feb 28;23(5):2679. doi: 10.3390/ijms23052679.
9
Impairment of Multiple Mitochondrial Energy Metabolism Pathways in the Heart of Chagas Disease Cardiomyopathy Patients.
Front Immunol. 2021 Nov 12;12:755782. doi: 10.3389/fimmu.2021.755782. eCollection 2021.
10
FAM3A Ameliorates Brain Impairment Induced by Hypoxia-Ischemia in Neonatal Rat.
Cell Mol Neurobiol. 2023 Jan;43(1):251-264. doi: 10.1007/s10571-021-01172-6. Epub 2021 Dec 1.

本文引用的文献

1
Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis.
Am J Pathol. 2014 Sep;184(9):2516-27. doi: 10.1016/j.ajpath.2014.05.019. Epub 2014 Jul 14.
2
Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance.
PLoS One. 2013 Dec 30;8(12):e84430. doi: 10.1371/journal.pone.0084430. eCollection 2013.
5
Mitochondrial dysfunction and the inflammatory response.
Mitochondrion. 2013 Mar;13(2):106-18. doi: 10.1016/j.mito.2013.01.003. Epub 2013 Jan 16.
6
TGF-β₂ decreases baseline and IL-13-stimulated mucin production by primary human bronchial epithelial cells.
Exp Lung Res. 2013 Feb;39(1):39-47. doi: 10.3109/01902148.2012.748854. Epub 2012 Dec 18.
7
Human mitochondrial DNA: roles of inherited and somatic mutations.
Nat Rev Genet. 2012 Dec;13(12):878-90. doi: 10.1038/nrg3275.
8
Mitophagy: mechanisms, pathophysiological roles, and analysis.
Biol Chem. 2012 Jul;393(7):547-64. doi: 10.1515/hsz-2012-0119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验