Suppr超能文献

验证人工神经网络和多元线性回归在预测城市生活垃圾平均季节性产生率方面的性能:以伊朗法尔斯省为例

Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

作者信息

Azadi Sama, Karimi-Jashni Ayoub

机构信息

Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz, Fars 71348-51156, Iran.

Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz, Fars 71348-51156, Iran.

出版信息

Waste Manag. 2016 Feb;48:14-23. doi: 10.1016/j.wasman.2015.09.034. Epub 2015 Oct 9.

Abstract

Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate.

摘要

预测固体废物产生量在综合固体废物管理计划中起着重要作用。在本研究中,验证了两种预测模型——人工神经网络(ANN)和多元线性回归(MLR)预测季节性城市固体废物平均产生率(SMSWG)的性能。通过对伊朗法尔斯省20个城市的案例研究,说明了所提出模型的准确性。使用了四种性能指标,即平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数(R)来评估这些模型的性能。作为传统模型的MLR显示出较差的预测性能。另一方面,结果表明,作为非线性模型的ANN模型在预测平均SMSWG率方面具有更高的预测准确性。因此,为了在未来制定更具成本效益的废物管理策略,ANN模型可用于预测平均SMSWG率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验