Suppr超能文献

利用深度学习技术在成人创伤超声重点评估(FAST)检查中检测腹腔积血的存在和位置。

Using Deep Learning to Detect the Presence and Location of Hemoperitoneum on the Focused Assessment with Sonography in Trauma (FAST) Examination in Adults.

机构信息

Boston University School of Medicine, Boston, MA, USA.

Department of Emergency Medicine, Boston Medical Center, BCD Building, 800 Harrison Ave1St Floor, Boston, MA, 02118, USA.

出版信息

J Digit Imaging. 2023 Oct;36(5):2035-2050. doi: 10.1007/s10278-023-00845-6. Epub 2023 Jun 7.

Abstract

Abdominal ultrasonography has become an integral component of the evaluation of trauma patients. Internal hemorrhage can be rapidly diagnosed by finding free fluid with point-of-care ultrasound (POCUS) and expedite decisions to perform lifesaving interventions. However, the widespread clinical application of ultrasound is limited by the expertise required for image interpretation. This study aimed to develop a deep learning algorithm to identify the presence and location of hemoperitoneum on POCUS to assist novice clinicians in accurate interpretation of the Focused Assessment with Sonography in Trauma (FAST) exam. We analyzed right upper quadrant (RUQ) FAST exams obtained from 94 adult patients (44 confirmed hemoperitoneum) using the YoloV3 object detection algorithm. Exams were partitioned via fivefold stratified sampling for training, validation, and hold-out testing. We assessed each exam image-by-image using YoloV3 and determined hemoperitoneum presence for the exam using the detection with highest confidence score. We determined the detection threshold as the score that maximizes the geometric mean of sensitivity and specificity over the validation set. The algorithm had 95% sensitivity, 94% specificity, 95% accuracy, and 97% AUC over the test set, significantly outperforming three recent methods. The algorithm also exhibited strength in localization, while the detected box sizes varied with a 56% IOU averaged over positive cases. Image processing demonstrated only 57-ms latency, which is adequate for real-time use at the bedside. These results suggest that a deep learning algorithm can rapidly and accurately identify the presence and location of free fluid in the RUQ of the FAST exam in adult patients with hemoperitoneum.

摘要

腹部超声检查已成为创伤患者评估的一个重要组成部分。通过使用即时超声(POCUS)找到游离液体,可以快速诊断内出血,并加快决定进行救生干预。然而,超声的广泛临床应用受到图像解释所需专业知识的限制。本研究旨在开发一种深度学习算法,以识别 POCUS 中腹腔积血的存在和位置,以帮助新手临床医生准确解读创伤重点评估超声检查(FAST)。我们使用 YoloV3 目标检测算法分析了 94 名成年患者(44 例确诊为腹腔积血)的右上象限(RUQ)FAST 检查。通过五重分层抽样对检查进行分割,用于训练、验证和保留测试。我们使用 YoloV3 逐张评估每张检查图像,并使用检测到的最高置信度评分确定检查的腹腔积血存在情况。我们将检测阈值确定为在验证集上最大化敏感性和特异性几何平均值的分数。该算法在测试集上的敏感性为 95%,特异性为 94%,准确性为 95%,AUC 为 97%,明显优于三种最近的方法。该算法在定位方面也表现出了优势,而检测到的框大小在阳性病例中平均为 56%的 IOUs 时会有所变化。图像处理仅显示 57 毫秒的延迟,足以满足床边实时使用的要求。这些结果表明,深度学习算法可以快速准确地识别腹腔积血成年患者 FAST 检查 RUQ 中游离液体的存在和位置。

相似文献

4
Artificial intelligence evaluation of focused assessment with sonography in trauma.创伤超声重点评估的人工智能评估。
J Trauma Acute Care Surg. 2023 Nov 1;95(5):706-712. doi: 10.1097/TA.0000000000004021. Epub 2023 May 11.

引用本文的文献

4
Artificial Intelligence in Emergency Medicine: A Primer for the Nonexpert.急诊医学中的人工智能:非专业人员入门指南。
J Am Coll Emerg Physicians Open. 2025 Feb 14;6(2):100051. doi: 10.1016/j.acepjo.2025.100051. eCollection 2025 Apr.

本文引用的文献

2
Deep Learning for FAST Quality Assessment.深度学习在 FAST 质量评估中的应用。
J Ultrasound Med. 2023 Jan;42(1):71-79. doi: 10.1002/jum.16045. Epub 2022 Jun 30.
4
Pediatric Blunt Abdominal Trauma and Point-of-Care Ultrasound.小儿钝性腹部创伤与即时超声检查。
Pediatr Emerg Care. 2021 Dec 1;37(12):624-629. doi: 10.1097/PEC.0000000000002573.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验