Suppr超能文献

采用人工智能建模方法预测城市固体废物产生量。

Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

机构信息

Griffith School of Engineering, Griffith University, Nathan, QLD, Australia.

Griffith School of Engineering, Griffith University, Nathan, QLD, Australia.

出版信息

Waste Manag. 2016 Oct;56:13-22. doi: 10.1016/j.wasman.2016.05.018. Epub 2016 Jun 11.

Abstract

Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg.

摘要

城市固体废物(MSW)管理是地方政府关注的主要问题,以保护人类健康、环境和保护自然资源。设计和运行有效的 MSW 管理系统需要准确估计未来的废物产生量。本研究的主要目的是开发一种准确预测 MSW 产生量的模型,帮助与废物相关的组织更好地设计和运行有效的 MSW 管理系统。本研究测试了包括支持向量机(SVM)、自适应神经模糊推理系统(ANFIS)、人工神经网络(ANN)和 K-最近邻(kNN)在内的四种智能系统算法,以评估其在预测澳大利亚昆士兰州洛根市议会地区月度废物产生量方面的能力。结果表明,人工智能模型具有良好的预测性能,可成功应用于建立城市固体废物预测模型。使用机器学习算法可以通过对废物产生时间序列进行训练来可靠地预测月度 MSW 产生量。此外,结果表明,ANFIS 系统在预测峰值方面表现最佳,而 kNN 则成功地预测了月度废物量的平均值。根据研究结果,到 2020 年,洛根市每年产生的城市固体废物总量将达到 9.4×10(7)kg,而峰值月度废物量将达到 9.37×10(6)kg。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验