Luo Yongkang, Ronning F, Wakeham N, Lu Xin, Park Tuson, Xu Z-A, Thompson J D
Los Alamos National Laboratory, Los Alamos, NM 87545;
Center for Correlated Matter, Zhejiang University, Hangzhou 310058, China;
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13520-4. doi: 10.1073/pnas.1509581112. Epub 2015 Oct 19.
The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2-δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 E-/formular unit in CeNi2-δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.
近藤晶格金属中相互竞争的相互作用之间易于调节的平衡,使得能够实现零温度下磁有序相和无序相之间的连续转变,即量子临界点(QCP)。实际上,这些高度关联的电子材料是发现和探索量子临界态的原型。为解释近藤晶格QCP附近出现的奇特热力学和电输运性质而提出的理论模型,假定存在无限大量的巡游电荷载流子。在此,我们报告了对近藤晶格体系CeNi2-δAs2(δ≈0.28)进行的系统输运和热力学研究,其反铁磁序通过压力和磁场被调节至零温度边界。这些实验表明,CeNi2-δAs2中非常小但有限的载流子密度~0.032电子/公式单位,导致了量子临界性的意外输运特征,以及随着温度降低完全相干的近藤晶格态的延迟发展。这种近藤晶格材料的小载流子密度和相关的半金属性有利于一种非常规的、局域矩类型的量子临界性,并引发了诺齐埃尔斯耗尽观点的幽灵,即传导电子自旋数量不足,无法单独屏蔽局域矩,需要集体近藤屏蔽。