Xue Jize, Zhao Yong-Qiang, Bu Yuanyang, Liao Wenzhi, Chan Jonathan Cheung-Wai, Philips Wilfried
IEEE Trans Image Process. 2021;30:3084-3097. doi: 10.1109/TIP.2021.3058590. Epub 2021 Feb 24.
Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution spatial-spectral information of the scene. Existing methods mostly based on spectral unmixing and sparse representation are often developed from a low-level vision task perspective, they cannot sufficiently make use of the spatial and spectral priors available from higher-level analysis. To this issue, this paper proposes a novel HSI super-resolution method that fully considers the spatial/spectral subspace low-rank relationships between available HR-MSI/LR-HSI and latent HSI. Specifically, it relies on a new subspace clustering method named "structured sparse low-rank representation" (SSLRR), to represent the data samples as linear combinations of the bases in a given dictionary, where the sparse structure is induced by low-rank factorization for the affinity matrix. Then we exploit the proposed SSLRR model to learn the SSLRR along spatial/spectral domain from the MSI/HSI inputs. By using the learned spatial and spectral low-rank structures, we formulate the proposed HSI super-resolution model as a variational optimization problem, which can be readily solved by the ADMM algorithm. Compared with state-of-the-art hyperspectral super-resolution methods, the proposed method shows better performance on three benchmark datasets in terms of both visual and quantitative evaluation.
通过融合高分辨率多光谱图像(HR-MSI)和低分辨率高光谱图像(LR-HSI)实现高光谱图像超分辨率,旨在重建场景的高分辨率空间光谱信息。现有的大多基于光谱解混和稀疏表示的方法通常是从低级视觉任务角度开发的,它们无法充分利用从高级分析中获得的空间和光谱先验信息。针对这个问题,本文提出了一种新颖的高光谱图像超分辨率方法,该方法充分考虑了可用的HR-MSI/LR-HSI与潜在高光谱图像之间的空间/光谱子空间低秩关系。具体来说,它依赖于一种名为“结构化稀疏低秩表示”(SSLRR)的新子空间聚类方法,将数据样本表示为给定字典中基的线性组合,并通过对亲和矩阵进行低秩分解来引入稀疏结构。然后,我们利用所提出的SSLRR模型从MSI/HSI输入中沿空间/光谱域学习SSLRR。通过使用学习到的空间和光谱低秩结构,我们将所提出的高光谱图像超分辨率模型表述为一个变分优化问题,该问题可以通过交替方向乘子法(ADMM)算法轻松求解。与现有最先进的高光谱超分辨率方法相比,所提出的方法在三个基准数据集上的视觉和定量评估方面均表现出更好的性能。