Suppr超能文献

计算机辅助医学图像分类在口腔癌早期诊断中的应用深度学习算法。

Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm.

机构信息

Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India.

出版信息

J Cancer Res Clin Oncol. 2019 Apr;145(4):829-837. doi: 10.1007/s00432-018-02834-7. Epub 2019 Jan 3.

Abstract

PURPOSE

Oral cancer is a complex wide spread cancer, which has high severity. Using advanced technology and deep learning algorithm early detection and classification are made possible. Medical imaging technique, computer-aided diagnosis and detection can make potential changes in cancer treatment. In this research work, we have developed a deep learning algorithm for automated, computer-aided oral cancer detecting system by investigating patient hyperspectral images.

METHODS

To validate the proposed regression-based partitioned deep learning algorithm, we compare the performance with other techniques by its classification accuracy, specificity, and sensitivity. For the accurate medical image classification objective, we demonstrate a new structure of partitioned deep Convolution Neural Network (CNN) with two partitioned layers for labeling and classify by labeling region of interest in multidimensional hyperspectral image.

RESULTS

The performance of the partitioned deep CNN was verified by classification accuracy. We have obtained classification accuracy of 91.4% with sensitivity 0.94 and a specificity of 0.91 for 100 image data sets training for task classification of cancerous tumor with benign and for task classification of cancerous tumor with normal tissue accuracy of 94.5% for 500 training patterns was obtained.

CONCLUSIONS

We compared the obtained results from another traditional medical image classification algorithm. From the obtained result, we identify that the quality of diagnosis is increased by proposed regression-based partitioned CNN learning algorithm for a complex medical image of oral cancer diagnosis.

摘要

目的

口腔癌是一种复杂的广泛癌症,具有高度的严重性。通过先进的技术和深度学习算法,可以实现早期检测和分类。医学成像技术、计算机辅助诊断和检测可以使癌症治疗发生潜在变化。在这项研究工作中,我们通过研究患者的高光谱图像,开发了一种用于自动化、计算机辅助口腔癌检测系统的深度学习算法。

方法

为了验证基于回归的分区深度学习算法的性能,我们通过分类准确性、特异性和敏感性来比较其与其他技术的性能。为了实现准确的医学图像分类目标,我们展示了一种新的分区深度卷积神经网络(CNN)结构,该结构具有两层分区,用于对多维高光谱图像中的感兴趣区域进行标记和分类。

结果

通过分类准确性验证了分区深度 CNN 的性能。我们对 100 个图像数据集进行了训练,用于癌症肿瘤与良性肿瘤的分类任务和癌症肿瘤与正常组织的分类任务,获得了 91.4%的分类准确性,敏感性为 0.94,特异性为 0.91。对于 500 个训练模式的任务分类,获得了 94.5%的准确性。

结论

我们比较了另一种传统医学图像分类算法的结果。从获得的结果中,我们确定,提出的基于回归的分区 CNN 学习算法提高了复杂口腔癌诊断医学图像的诊断质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验