Suppr超能文献

一种开发生物活性纳米结构纤维素的策略:缓释及多种应用

A Strategy to Develop Bioactive Nanoarchitecture Cellulose: Sustained Release and Multifarious Applications.

作者信息

Karuppusamy Sembanadar, Pratheepkumar Annamalai, Dhandapani Perumal, Maruthamuthu Sundaram, Kulandainathan Manickam Anbu

出版信息

J Biomed Nanotechnol. 2015 Sep;11(9):1535-49. doi: 10.1166/jbn.2015.2049.

Abstract

Cellulose membranes were engineered to produce hydrophobic surfaces via a simple and soft chemical process to introduce multifunctional properties of an otherwise hydrophilic cellulose surface with polymer-grafted nanosilver to form a core-shell nanostructure. A superhydrophobic domain of the polymer on cellulose was created through the amide bond formation between the anhydride units of the polymer and the aminosiloxane-functionalized cellulose through layer-over-layer formulation. This formulation was confirmed through XPS, XRD, 29Si-NMR, and FTIR studies. Further, SEM and TEM analysis revealed that short linear silver nanowires were uniformly obtained with an average diameter of 60 nm and length of 288 nm, using a mild reducing agent at 60 degrees C, which resulted in a hierarchical cellulose surface. The nanosilver colloids released from the hierarchical cellulose surface were stabilized by the polymer matrix in solution, which led to a decrease in the rate of formation of Ag+ enhancing the material's killing efficacy against microbes. This biodegradable nanocomposite-based cellulose hierarchical surface development has potential for application as superhydrophobic membranes for oil-water separation, antimicrobial activity, and pH-triggered sustained release of colloidal silver for wound healing, which could possibly be applied for use as smart bandages.

摘要

通过简单且温和的化学过程对纤维素膜进行工程改造,以产生疏水表面,从而赋予原本亲水的纤维素表面多功能特性,即将聚合物接枝纳米银引入其中,形成核壳纳米结构。通过聚合物的酸酐单元与氨基硅氧烷基官能化纤维素之间通过层层组装形成酰胺键,在纤维素上创建了聚合物的超疏水区域。通过XPS、XRD、29Si-NMR和FTIR研究证实了这种组装方式。此外,扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析表明,在60℃下使用温和的还原剂,均匀获得了平均直径为60nm、长度为288nm的短线性银纳米线,这形成了分级结构的纤维素表面。从分级结构的纤维素表面释放的纳米银胶体在溶液中由聚合物基质稳定,这导致Ag+形成速率降低,增强了材料对微生物的杀灭效果。这种基于可生物降解纳米复合材料的纤维素分级表面开发具有作为超疏水膜用于油水分离、抗菌活性以及用于伤口愈合的胶体银的pH触发持续释放的应用潜力,这可能适用于用作智能绷带。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验