Suppr超能文献

一个用于在GROMACS中设置相对自由能计算的Python工具。

A Python tool to set up relative free energy calculations in GROMACS.

作者信息

Klimovich Pavel V, Mobley David L

机构信息

Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA.

Department of Chemistry, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA.

出版信息

J Comput Aided Mol Des. 2015 Nov;29(11):1007-14. doi: 10.1007/s10822-015-9873-0. Epub 2015 Oct 20.

Abstract

Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper (LOMAP; Liu et al. in J Comput Aided Mol Des 27(9):755-770, 2013), recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge (Mobley et al. in J Comput Aided Mol Des 28(4):135-150, 2014). Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations.

摘要

在过去十年中,基于分子动力学(MD)模拟的自由能计算有了巨大的发展。然而,以自动化方式设置这些计算仍然困难且繁琐,因为当今大多数MD模拟软件包都缺乏该功能。相对自由能计算由于多种原因而成为一项特殊挑战,包括寻找共同子结构以及确定要应用的转化等问题。在此,我们展示了一个工具alchemical-setup.py,它能自动生成使用MD软件包GROMACS进行相对溶剂化和结合自由能计算所需的所有输入文件。当与我们团队最近开发的铅优化映射器(LOMAP;Liu等人,《计算机辅助分子设计杂志》,2013年,第27卷第9期:755 - 770页)相结合时,alchemical-setup.py能够在GROMACS中实现相对自由能计算的完全自动化设置。借助由LOMAP计算得到的计划计算图和映射,我们的工具生成了对给定分子集进行相对自由能计算所需的拓扑结构和坐标文件,并提供了一组模拟输入参数。通过对SAMPL4挑战中的一些分子(Mobley等人,《计算机辅助分子设计杂志》,2014年,第28卷第4期:135 - 150页)进行相对水合自由能计算,对该工具进行了验证。与先前发表的结果高度吻合以及进行自由能计算的简便方式,使得alchemical-setup.py成为相对溶剂化和结合自由能计算自动化设置的一个很有前景的工具。

相似文献

1
A Python tool to set up relative free energy calculations in GROMACS.
J Comput Aided Mol Des. 2015 Nov;29(11):1007-14. doi: 10.1007/s10822-015-9873-0. Epub 2015 Oct 20.
2
Alchemical prediction of hydration free energies for SAMPL.
J Comput Aided Mol Des. 2012 May;26(5):551-62. doi: 10.1007/s10822-011-9528-8. Epub 2011 Dec 24.
3
Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages.
J Chem Theory Comput. 2018 Nov 13;14(11):5567-5582. doi: 10.1021/acs.jctc.8b00544. Epub 2018 Oct 22.
4
FESetup: Automating Setup for Alchemical Free Energy Simulations.
J Chem Inf Model. 2015 Dec 28;55(12):2485-90. doi: 10.1021/acs.jcim.5b00368. Epub 2015 Nov 13.
5
Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations.
J Phys Chem B. 2015 Jan 22;119(3):810-23. doi: 10.1021/jp505332p. Epub 2014 Nov 7.
6
Perturbation Free-Energy Toolkit: An Automated Alchemical Topology Builder.
J Chem Inf Model. 2021 Sep 27;61(9):4382-4390. doi: 10.1021/acs.jcim.1c00428. Epub 2021 Aug 20.
7
Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.
J Chem Theory Comput. 2017 Dec 12;13(12):6275-6289. doi: 10.1021/acs.jctc.7b00849. Epub 2017 Nov 29.
8
Guidelines for the analysis of free energy calculations.
J Comput Aided Mol Des. 2015 May;29(5):397-411. doi: 10.1007/s10822-015-9840-9. Epub 2015 Mar 26.
9
Implementation of the QUBE Force Field in SOMD for High-Throughput Alchemical Free-Energy Calculations.
J Chem Inf Model. 2021 May 24;61(5):2124-2130. doi: 10.1021/acs.jcim.1c00328. Epub 2021 Apr 22.
10
FEPrepare: A Web-Based Tool for Automating the Setup of Relative Binding Free Energy Calculations.
J Chem Inf Model. 2021 Sep 27;61(9):4131-4138. doi: 10.1021/acs.jcim.1c00215. Epub 2021 Sep 14.

引用本文的文献

1
Improvements in Precision of Relative Binding Free Energy Calculations Afforded by the Alchemical Enhanced Sampling (ACES) Approach.
J Chem Inf Model. 2024 Sep 23;64(18):7046-7055. doi: 10.1021/acs.jcim.4c00464. Epub 2024 Sep 3.
2
AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-Energy Simulation Setup and Analysis (ProFESSA).
J Chem Inf Model. 2022 Dec 12;62(23):6069-6083. doi: 10.1021/acs.jcim.2c00879. Epub 2022 Nov 30.
3
Refinement of the Optimized Potentials for Liquid Simulations Force Field for Thermodynamics and Dynamics of Liquid Alkanes.
J Phys Chem B. 2022 Aug 11;126(31):5896-5907. doi: 10.1021/acs.jpcb.2c03686. Epub 2022 Aug 1.
5
Large scale relative protein ligand binding affinities using non-equilibrium alchemy.
Chem Sci. 2019 Dec 2;11(4):1140-1152. doi: 10.1039/c9sc03754c.
7
Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints.
J Chem Theory Comput. 2021 Mar 9;17(3):1326-1336. doi: 10.1021/acs.jctc.0c01219. Epub 2021 Feb 2.
8
Upgraded AMBER Force Field for Zinc-Binding Residues and Ligands for Predicting Structural Properties and Binding Affinities in Zinc-Proteins.
ACS Omega. 2020 Jun 16;5(25):15301-15310. doi: 10.1021/acsomega.0c01337. eCollection 2020 Jun 30.
9
Repulsive Soft-Core Potentials for Efficient Alchemical Free Energy Calculations.
J Chem Theory Comput. 2020 Aug 11;16(8):4776-4789. doi: 10.1021/acs.jctc.0c00163. Epub 2020 Jul 6.
10
SAMPL6 Octanol-water partition coefficients from alchemical free energy calculations with MBIS atomic charges.
J Comput Aided Mol Des. 2020 Apr;34(4):327-334. doi: 10.1007/s10822-020-00281-6. Epub 2020 Jan 20.

本文引用的文献

1
Practical Aspects of Free-Energy Calculations: A Review.
J Chem Theory Comput. 2014 Jul 8;10(7):2632-47. doi: 10.1021/ct500161f. Epub 2014 Jun 6.
2
Guidelines for the analysis of free energy calculations.
J Comput Aided Mol Des. 2015 May;29(5):397-411. doi: 10.1007/s10822-015-9840-9. Epub 2015 Mar 26.
3
Blind prediction of solvation free energies from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Mar;28(3):135-50. doi: 10.1007/s10822-014-9718-2. Epub 2014 Mar 11.
4
The SAMPL4 host-guest blind prediction challenge: an overview.
J Comput Aided Mol Des. 2014 Apr;28(4):305-17. doi: 10.1007/s10822-014-9735-1. Epub 2014 Mar 6.
5
Lead optimization mapper: automating free energy calculations for lead optimization.
J Comput Aided Mol Des. 2013 Sep;27(9):755-70. doi: 10.1007/s10822-013-9678-y. Epub 2013 Sep 26.
6
Blind prediction of charged ligand binding affinities in a model binding site.
J Mol Biol. 2013 Nov 15;425(22):4569-83. doi: 10.1016/j.jmb.2013.07.030. Epub 2013 Jul 26.
7
Perspective: Alchemical free energy calculations for drug discovery.
J Chem Phys. 2012 Dec 21;137(23):230901. doi: 10.1063/1.4769292.
8
An introduction to best practices in free energy calculations.
Methods Mol Biol. 2013;924:271-311. doi: 10.1007/978-1-62703-017-5_11.
9
Alchemical free energy methods for drug discovery: progress and challenges.
Curr Opin Struct Biol. 2011 Apr;21(2):150-60. doi: 10.1016/j.sbi.2011.01.011. Epub 2011 Feb 23.
10
Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site.
J Mol Biol. 2009 Dec 11;394(4):747-63. doi: 10.1016/j.jmb.2009.09.049. Epub 2009 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验