Suppr超能文献

基于变分增强采样(ACES)方法的相对结合自由能计算精度的改进。

Improvements in Precision of Relative Binding Free Energy Calculations Afforded by the Alchemical Enhanced Sampling (ACES) Approach.

机构信息

TandemAI, New York, New York 10036, United States.

Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.

出版信息

J Chem Inf Model. 2024 Sep 23;64(18):7046-7055. doi: 10.1021/acs.jcim.4c00464. Epub 2024 Sep 3.

Abstract

Accurate predictions of how strongly small molecules bind to proteins, such as those afforded by relative binding free energy (RBFE) calculations, can greatly increase the efficiency of the hit-to-lead and lead optimization stages of the drug discovery process. The success of such calculations, however, relies heavily on their precision. Here, we show that a recently developed alchemical enhanced sampling (ACES) approach can consistently improve the precision of RBFE calculations on a large and diverse set of proteins and small molecule ligands. The addition of ACES to conventional RBFE calculations lowered the average hysteresis by over 35% (0.3-0.4 kcal/mol) and the average replicate spread by over 25% (0.2-0.3 kcal/mol) across a set of 10 protein targets and 213 small molecules while maintaining similar or improved accuracy. We show in atomic detail how ACES improved convergence of several representative RBFE calculations through enhancing the sampling of important slowly transitioning ligand degrees of freedom.

摘要

准确预测小分子与蛋白质的结合强度,例如相对结合自由能 (RBFE) 计算所提供的预测,可大大提高药物发现过程中 hit-to-lead 和先导优化阶段的效率。然而,这些计算的成功在很大程度上依赖于它们的精度。在这里,我们展示了最近开发的一种基于变分的增强采样 (ACES) 方法可以一致地提高对大量不同蛋白质和小分子配体的 RBFE 计算的精度。在一组 10 个蛋白质靶标和 213 个小分子中,将 ACES 加入到传统的 RBFE 计算中,平均滞后降低了 35%以上(0.3-0.4 kcal/mol),平均重复扩散降低了 25%以上(0.2-0.3 kcal/mol),同时保持了相似或更高的准确性。我们详细展示了 ACES 如何通过增强重要的缓慢转变配体自由度的采样来改善几个代表性 RBFE 计算的收敛性。

相似文献

本文引用的文献

1
Alchemical Enhanced Sampling with Optimized Phase Space Overlap.具有优化相空间重叠的炼金术增强采样
J Chem Theory Comput. 2024 May 14;20(9):3935-3953. doi: 10.1021/acs.jctc.4c00251. Epub 2024 Apr 26.
2
Modern Alchemical Free Energy Methods for Drug Discovery Explained.现代药物发现中的炼金术自由能方法解析。
ACS Phys Chem Au. 2023 Oct 4;3(6):478-491. doi: 10.1021/acsphyschemau.3c00033. eCollection 2023 Nov 22.
3
AmberTools. AmberTools。
J Chem Inf Model. 2023 Oct 23;63(20):6183-6191. doi: 10.1021/acs.jcim.3c01153. Epub 2023 Oct 8.
5
ACES: Optimized Alchemically Enhanced Sampling.ACES:优化的化学增强采样法
J Chem Theory Comput. 2023 Jan 11. doi: 10.1021/acs.jctc.2c00697.
9
Application of molecular dynamics simulation in biomedicine.分子动力学模拟在生物医学中的应用。
Chem Biol Drug Des. 2022 May;99(5):789-800. doi: 10.1111/cbdd.14038. Epub 2022 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验