Tiran Elodie, Deffieux Thomas, Correia Mafalda, Maresca David, Osmanski Bruno-Felix, Sieu Lim-Anna, Bergel Antoine, Cohen Ivan, Pernot Mathieu, Tanter Mickael
ESPCI-ParisTech, PSL University, INSERM U979, CNRS UMR7587, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France.
Phys Med Biol. 2015 Nov 7;60(21):8549-66. doi: 10.1088/0031-9155/60/21/8549. Epub 2015 Oct 21.
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8 ± 0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07 ± 0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.
使用平面波或发散波的超快成像技术最近实现了新的超声成像模式,其具有更高的灵敏度和非常高的帧率。其中一些新的成像方式包括剪切波弹性成像、超快多普勒成像、超快对比增强成像和功能超声成像。尽管超快成像已经在临床取得了成功,但进一步提高其在特定应用中的穿透深度和信噪比仍将具有重要价值。超快成像依赖于连续倾斜平面波发射产生的后向散射回波的相干合成;这会产生高分辨率超声图像,但需要在最终帧率、对比度和分辨率之间进行权衡。在这项工作中,我们引入了多平面波成像,这是一种通过虚拟增加发射信号幅度而不影响帧率来显著提高超快图像信噪比的新方法。该方法依赖于在单个发射事件中连续发射多个具有不同编码幅度和发射角度的平面波。然后,通过将连续事件的接收数据与适当的系数重新组合,可以获得每个幅度增加的单个平面波的数据。实验证明了多平面波在B模式、剪切波弹性成像和超快多普勒成像中的优势。在经过校准的超声体模(0.7 d MHz(-1) cm(-1))中,发射4个平面波的多平面波成像使信噪比提高了5.8 ± 0.5 dB,穿透深度增加了约10 mm。在剪切波弹性成像中,相同的多平面波配置使粒子速度标准差降低了2.07 ± 0.05倍,剪切波速度图标准差降低了两倍。在功能超声成像中,对啮齿动物大脑深部结构的脑血容量进行映射时,对比度噪声比提高了3至6 dB。