Suppr超能文献

基于时间对齐的平面波复合方法在高帧率剪切波弹性成像中的应用:组织 phantom 的实验验证与性能评估。

Time-Aligned Plane Wave Compounding Methods for High-Frame-Rate Shear Wave Elastography: Experimental Validation and Performance Assessment on Tissue Phantoms.

机构信息

Department of Aerospace Engineering, San Diego State University, San Diego, California, USA.

Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Ultrasound Med Biol. 2021 Jul;47(7):1931-1948. doi: 10.1016/j.ultrasmedbio.2021.03.003. Epub 2021 Apr 15.

Abstract

Shear wave elastography (SWE) is an ultrasonic technique able to quantitatively assess the mechanical properties of tissues by combining acoustic radiation force and ultrafast imaging. While utilizing coherent plane wave compounding enhances echo and shear wave motion signal-to-noise ratio (SNR), it also reduces the effective pulse repetition frequency (PRF), affecting the accuracy of the measurements of motion and, consequently, of material properties. It is important to maintain both high-motion SNR and PRF, particularly for the characterization of (material and/or geometrical) dispersive tissues such as arteries. This work proposes a method for SWE measurements with high SNR, while maintaining a high PRF, using conventional clinical ultrasound scanners. A time alignment process is applied after acquiring data from plane wave transmissions at different angles. The time alignment uses interpolation to obtain data points at higher frame rates, and the time-aligned data are compounded to increase the SNR. The method is used for SWE in tissue-mimicking phantoms of different stiffness and is compared with traditional plane wave compounding. Increases of 58% and 36% in spatial and temporal bandwidth compared with conventional plane wave compounding, respectively, can be achieved for SWE measurements of representative arterial stiffness values. Improvements in phase velocity accuracy and bandwidth in an arterial phantom are also described, to emphasize the beneficial advantage in dispersive cases.

摘要

剪切波弹性成像(SWE)是一种超声技术,通过结合声辐射力和超快速成像,能够定量评估组织的机械特性。虽然利用相干平面波合成可以提高回波和剪切波运动信号-噪声比(SNR),但它也降低了有效的脉冲重复频率(PRF),从而影响运动的测量精度,进而影响材料特性的测量精度。保持高运动 SNR 和高 PRF 非常重要,特别是对于动脉等具有(材料和/或几何)弥散特性的组织的特征描述。本工作提出了一种使用传统临床超声扫描仪进行高 SNR 的 SWE 测量的方法,同时保持高 PRF。在从不同角度采集平面波传输数据后,应用时间对准过程。时间对准使用插值在更高的帧率下获取数据点,并对时间对准的数据进行合成以提高 SNR。该方法用于不同刚度的组织模拟体模中的 SWE,并与传统的平面波合成进行比较。与传统的平面波合成相比,分别可以实现 SWE 对代表性动脉硬度值的空间和时间带宽增加 58%和 36%。还描述了动脉体模中相位速度准确性和带宽的改善,以强调在弥散情况下的有益优势。

相似文献

5
Ultrafast vascular strain compounding using plane wave transmission.使用平面波传输进行超快血管应变复合。
J Biomech. 2014 Mar 3;47(4):815-23. doi: 10.1016/j.jbiomech.2014.01.015. Epub 2014 Jan 13.
8
Coded excitation plane wave imaging for shear wave motion detection.用于剪切波运动检测的编码激励平面波成像
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul;62(7):1356-72. doi: 10.1109/TUFFC.2015.007062.

引用本文的文献

5
Comb Detection for Measuring Shear Wave Propagation.用于测量剪切波传播的梳状检测
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep;70(9):1135-1145. doi: 10.1109/TUFFC.2023.3297394. Epub 2023 Aug 29.

本文引用的文献

5
Feasibility and Validation of 4-D Pulse Wave Imaging in Phantoms and In Vivo.4-D 脉冲波成像在体模和体内的可行性和验证。
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Sep;64(9):1305-1317. doi: 10.1109/TUFFC.2017.2735381. Epub 2017 Aug 3.
6
Pulse wave imaging using coherent compounding in a phantom and in vivo.在体模和体内使用相干复合技术的脉搏波成像。
Phys Med Biol. 2017 Mar 7;62(5):1700-1730. doi: 10.1088/1361-6560/aa553a. Epub 2016 Dec 21.
7
Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.延迟编码谐波成像(DE-HI)在多平面波复合中的应用。
IEEE Trans Med Imaging. 2017 Apr;36(4):952-959. doi: 10.1109/TMI.2016.2638639. Epub 2016 Dec 12.
9
3D Quasi-Static Ultrasound Elastography With Plane Wave In Vivo.体内平面波三维准静态超声弹性成像
IEEE Trans Med Imaging. 2017 Feb;36(2):357-365. doi: 10.1109/TMI.2016.2596706. Epub 2016 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验