Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128 Mainz, Germany.
Phys Chem Chem Phys. 2015 Nov 28;17(44):29854-8. doi: 10.1039/c4cp04875j. Epub 2015 Oct 21.
Half-Heusler (HH) compounds have shown high figure of merit up to 1.5. Here, we address the long-term stability of n- and p-type HH materials. For this purpose, we investigated HH materials based on the Ti0.3Zr0.35Hf0.35NiSn-system after 500 cycles (1700 h) from 373 to 873 K. Both compounds exhibit a maximum Seebeck coefficient of |α|≈ 210 μV K(-1) and a phase separation into two HH phases. The dendritic microstructure is temperature resistant and upon cycling the changes in the microstructure are so marginal that the low thermal conductivity values (κ < 4 W m(-1) K(-1)) could be maintained. Our results emphasize that phase-separated HH compounds are suitable low cost materials and can lead to enhanced thermoelectric efficiencies beyond the set benchmark for industrial applications.
半赫斯勒(HH)化合物的品质因数高达 1.5。在这里,我们研究了 n 型和 p 型 HH 材料的长期稳定性。为此,我们在 373 至 873 K 温度下对基于 Ti0.3Zr0.35Hf0.35NiSn 体系的 HH 材料进行了 500 次循环(1700 h)实验。两种化合物均表现出最大的塞贝克系数|α|≈210 μV K(-1)和两相分离成两个 HH 相。枝晶状微观结构具有耐高温性,并且在循环过程中微观结构的变化非常微小,从而保持了低导热系数(κ<4 W m(-1) K(-1))。我们的研究结果强调,相分离的 HH 化合物是合适的低成本材料,并且可以在工业应用中设定的基准之上提高热电效率。