Physics of Energy Harvesting Division, National Physical Laboratory, Council of Scientific and Industrial Research, New Delhi 110012, India.
Phys Chem Chem Phys. 2015 Nov 28;17(44):30090-101. doi: 10.1039/c5cp05213k. Epub 2015 Oct 26.
All scale hierarchical architecturing, matrix/inclusion band alignment and intra-matrix electronic structure engineering, the so called panoscopic approach for thermoelectric materials has been demonstrated to be an effective paradigm for optimizing high ZT. To achieve such hierarchically organized microstructures, composition engineering has been considered to be an efficient strategy. In this work, such a panoscopic concept has been extended to demonstrate for the first time in the case of half-Heusler based thermoelectric materials via a composition engineering route. A series of new off-stoichiometric n-type Zr0.7Hf0.3Ni1+xSn (0 ≤x≤ 0.10) HH compositions have been modified to derive HH(1 -x)/full-Heusler (FH)(x) composite with an all scale hierarchically modified microstructure with FH inclusions within the matrix to study the temperature dependent thermoelectric properties. The structural analysis employing XRD, FE-SEM and HR-TEM of these materials reveal a composite of HH and FH, with hierarchically organized microstructures. In such a submicron/nano-composite, the electronic properties are observed to be well optimized yielding a large power factor; α(2)σ (∼30.7 × 10(-4) W m(-1) K(-2) for Zr0.7Hf0.3Ni1.03Sn) and reduced thermal conductivity (∼2.4 W m(-1) K(-1) for Zr0.7Hf0.3Ni1.03Sn) yielding a high ZT∼ 0.96 at 773 K for composition Zr0.7Hf0.3Ni1.03Sn which is ∼250% larger than the normal HH Zr0.7Hf0.3NiSn (ZT∼ 0.27 at 773 K). The enhancement in ZT of these composites has been discussed in terms of primary electron filtering, electron injection and several phonon scattering mechanisms such as alloy scattering, point defect scattering, and grain boundary scattering. The Bergman and Fel model is used to calculate effective thermoelectric parameters of these composites for comparing the experimental results.
所有尺度的层次结构架构、矩阵/包含带对准和基质内电子结构工程,即所谓的热电材料全景方法,已被证明是优化高 ZT 的有效范例。为了实现这种层次化的微观结构,组成工程被认为是一种有效的策略。在这项工作中,通过组成工程途径,首次将这种全景概念扩展到基于半 Heusler 的热电材料。通过组成工程途径,对一系列新的非化学计量 n 型 Zr0.7Hf0.3Ni1+xSn(0≤x≤0.10)HH 组合物进行了修改,以获得具有全尺度层次化改性微结构的 HH(1 -x)/全 Heusler(FH)(x)复合材料,其中 FH 包含物位于基质内,以研究温度相关的热电性能。这些材料的结构分析采用 XRD、FE-SEM 和 HR-TEM,揭示了 HH 和 FH 的复合材料,具有层次化的组织结构。在这种亚微米/纳米复合材料中,电子性能得到了很好的优化,产生了大的功率因子;α(2)σ(对于 Zr0.7Hf0.3Ni1.03Sn,约为 30.7×10(-4) W m(-1) K(-2))和降低的热导率(对于 Zr0.7Hf0.3Ni1.03Sn,约为 2.4 W m(-1) K(-1)),在 773 K 时 ZT∼0.96,对于组成 Zr0.7Hf0.3Ni1.03Sn,比正常的 HH Zr0.7Hf0.3NiSn(ZT∼0.27 在 773 K 时)高约 250%。通过主电子过滤、电子注入和几种声子散射机制,如合金散射、点缺陷散射和晶界散射,讨论了这些复合材料 ZT 的增强。伯格曼和费尔模型用于计算这些复合材料的有效热电参数,以比较实验结果。