Kellogg Ryan A, Tian Chengzhe, Lipniacki Tomasz, Quake Stephen R, Tay Savaş
Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland.
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Elife. 2015 Oct 21;4:e08931. doi: 10.7554/eLife.08931.
Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamics and gene regulation under dose- and duration-modulated inflammatory inputs. Mathematical modeling predicted and microfluidic single-cell experiments confirmed that integral of the stimulus (or area, concentration × duration) controls the fraction of cells that activate NF-κB in the population. However, stimulus temporal profile determined NF-κB dynamics, cell-to-cell variability, and gene expression phenotype. A sustained, weak stimulation lead to heterogeneous activation and delayed timing that is transmitted to gene expression. In contrast, a transient, strong stimulus with the same area caused rapid and uniform dynamics. These results show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input profile, allowing parallel and independent control of single-cell activation probability and population heterogeneity.
数字信号增强了细胞在嘈杂环境中决策的稳健性,但尚不清楚数字系统如何传输有关刺激的时间信息。为了了解时间输入信息如何被NF-κB系统编码和解码,我们研究了在剂量和持续时间调制的炎症输入下转录因子的动态变化和基因调控。数学建模预测并经微流控单细胞实验证实,刺激的积分(或面积,浓度×持续时间)控制群体中激活NF-κB的细胞比例。然而,刺激的时间分布决定了NF-κB的动态变化、细胞间变异性和基因表达表型。持续的弱刺激导致异质性激活和延迟定时,并传递到基因表达。相比之下,具有相同面积的短暂强刺激会引起快速且均匀的动态变化。这些结果表明,数字NF-κB信号通过输入分布实现对细胞表型的多维控制,允许对单细胞激活概率和群体异质性进行并行和独立控制。