Smeal Steven W, Mokashi Chaitanya S, Kim A Hyun, Chiknas P Murdo, Lee Robin E C
Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
current address Altos Labs, Redwood City, CA, 94065, USA.
bioRxiv. 2024 Oct 1:2024.09.26.615244. doi: 10.1101/2024.09.26.615244.
Temporal properties of molecules within signaling networks, such as sub-cellular changes in protein abundance, encode information that mediate cellular responses to stimuli. How dynamic signals relay and process information is a critical gap in understanding cellular behaviors. In this work, we investigate transmission of information about changing extracellular cytokine concentrations from receptor-level supramolecular assemblies of IκB kinases (IKK) downstream to the nuclear factor κB (NF-κB) transcription factor (TF). In a custom robot-controlled microfluidic cell culture, we simultaneously measure input-output (I/O) encoding of IKK-NF-κB in dual fluorescent-reporter cells. When compared with single cytokine pulses, dose-conserving pulse trains prolong IKK assemblies and lead to disproportionately enhanced retention of nuclear NF-κB. Using particle swarm optimization, we demonstrate that a mechanistic model does not recapitulate this emergent property. By contrast, invoking mechanisms for NF-κB-dependent chromatin remodeling to the model recapitulates experiments, showing how temporal dosing that prolongs IKK assemblies facilitates switching to permissive chromatin that sequesters nuclear NF-κB. Remarkably, using simulations to resolve single-cell receptor data accurately predicts same-cell NF-κB time courses for more than 80% of our single cell trajectories. Our data and simulations therefore suggest that cell-to-cell heterogeneity in cytokine responses are predominantly due to mechanisms at the level receptor-associated protein complexes.
信号网络中分子的时间特性,如蛋白质丰度的亚细胞变化,编码介导细胞对刺激作出反应的信息。动态信号如何传递和处理信息是理解细胞行为的一个关键空白。在这项工作中,我们研究了关于细胞外细胞因子浓度变化的信息从IκB激酶(IKK)下游的受体水平超分子组装体传递到核因子κB(NF-κB)转录因子(TF)的过程。在定制的机器人控制微流控细胞培养中,我们在双荧光报告细胞中同时测量IKK-NF-κB的输入-输出(I/O)编码。与单细胞因子脉冲相比,剂量守恒脉冲序列延长了IKK组装体,并导致核NF-κB的保留不成比例地增强。使用粒子群优化算法,我们证明了一个机械模型无法重现这种涌现特性。相比之下,在模型中引入NF-κB依赖的染色质重塑机制则能重现实验结果,表明延长IKK组装体的时间给药如何促进向封存核NF-κB的允许染色质的转变。值得注意的是,使用模拟来解析单细胞受体数据能准确预测超过80%的单细胞轨迹的同细胞NF-κB时间进程。因此,我们的数据和模拟表明,细胞因子反应中的细胞间异质性主要归因于受体相关蛋白复合物水平的机制。