Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA.
Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA.
Science. 2014 Dec 12;346(6215):1370-3. doi: 10.1126/science.1254933.
Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.
生化反应固有的随机性(内在噪声)和细胞状态的可变性(外在噪声)降低了通过信号转导网络传递的信息。我们分析了时间信号调制——即动态——降低噪声引起的信息丢失的能力。在细胞外信号调节激酶 (ERK)、钙 (Ca(2+)) 和核因子 kappa-B (NF-κB) 途径中,与非动态反应相比,响应动态导致信息传输能力显著提高。理论分析表明,信号转导动态在克服外在噪声方面起着关键作用。在不同信号噪声水平下测量 ERK 网络中的信息传输的实验测量证实了我们的预测,并表明信号转导动态减轻了,并且可以潜在地消除,外在噪声引起的信息丢失。通过抑制细胞间变异性对信息的破坏作用,动态响应大大提高了生化信号网络的准确性。