ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France.
Dipartimento di Chimica "G. Caimician", Alma Mater Studiorum - Università di Bologna, v. San Giacomo, 11 - 40126, Bologna, Italy.
Small. 2016 Jan 6;12(1):83-95. doi: 10.1002/smll.201501017. Epub 2015 Oct 21.
The self-assembly of small organic molecules interacting via non-covalent forces is a viable approach towards the construction of highly ordered nanostructured materials. Among various molecular components, natural and unnatural nucleobases can undergo non-covalent self-association to form supramolecular architectures with ad hoc structural motifs. Such structures, when decorated with appropriate electrically/optically active units, can be used as scaffolds to locate such units in pre-determined positions in 2D on a surface, thereby paving the way towards a wide range of applications, e.g., in optoelectronics. This review discusses some of the basic concepts of the supramolecular engineering of natural and unnatural nucleobases and derivatives thereof as well as self-assembly processes on conductive solid substrates, as investigated by scanning tunnelling microscopy in ultra-high vacuum and at the solid/liquid interface. By unravelling the structure and dynamics of these self-assembled architectures with a sub-nanometer resolution, a greater control over the formation of increasingly sophisticated functional systems is achieved. The ability to understand and predict how nucleobases interact, both among themselves as well as with other molecules, is extremely important, since it provides access to ever more complex DNA- and RNA-based nanostructures and nanomaterials as key components in nanomechanical devices.
小分子通过非共价相互作用自组装是构建高度有序的纳米结构材料的一种可行方法。在各种分子成分中,天然和非天然碱基可以通过非共价自组装形成具有特定结构特征的超分子结构。这些结构,当用适当的电/光活性单元进行修饰时,可以用作支架,将这些单元定位在表面上的二维预定位置,从而为广泛的应用铺平道路,例如在光电领域。本文综述了通过扫描隧道显微镜在超高真空和固/液界面研究的天然和非天然碱基及其衍生物的超分子工程以及在导电固体基底上的自组装过程的一些基本概念。通过以亚纳米分辨率揭示这些自组装结构的结构和动态,可以实现对越来越复杂的功能系统形成的更好控制。了解和预测碱基如何相互作用(包括彼此之间以及与其他分子之间的相互作用)非常重要,因为它可以获得越来越复杂的基于 DNA 和 RNA 的纳米结构和纳米材料,作为纳米机械器件的关键组成部分。