Saravanan R Kamal, Avasthi Ilesha, Prajapati Rajneesh Kumar, Verma Sandeep
Department of Chemistry, Indian Institute of Technology Kanpur Kanpur, 208016 UP India
Centre for Nanoscience, Indian Institute of Technology Kanpur Kanpur 208016 UP India.
RSC Adv. 2018 Jul 6;8(43):24541-24560. doi: 10.1039/c8ra03903h. eCollection 2018 Jul 2.
This review presents recent progress concerning the organization of nucleobases on highly ordered pyrolytic graphite (HOPG), mica, Cu(110) and Au(111) surfaces, followed by their studies using microscopy methods such as atomic force microscopy (AFM), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Interesting research prospects related to surface patterning by nucleobases, nucleobase-functionalized carbon nanotubes (CNTs) and metal-nucleobase coordination polymers are also discussed, which offer a wide array of functional molecules for advanced applications. Nucleobases and their analogs are able to invoke non-covalent interactions such as π-π stacking and hydrogen bonding, and possess the required framework to coordinate metal ions, giving rise to fascinating supramolecular architectures. The latter could be transferred to conductive substrates, such as HOPG and gold, for assessment by high-end tunneling microscopy under various conditions. Clear understanding of the principles governing nucleobase self-assembly and metal ion complexation, and precise control over generation of functional architectures, might lead to custom assemblies for targeted nanotechnological and nanomaterial applications.
本综述介绍了关于核碱基在高度有序热解石墨(HOPG)、云母、Cu(110)和Au(111)表面的排列的最新进展,随后介绍了使用原子力显微镜(AFM)、扫描隧道显微镜(STM)和透射电子显微镜(TEM)等显微镜方法对其进行的研究。还讨论了与核碱基、核碱基功能化碳纳米管(CNT)和金属-核碱基配位聚合物进行表面图案化相关的有趣研究前景,这些研究为先进应用提供了各种各样的功能分子。核碱基及其类似物能够引发π-π堆积和氢键等非共价相互作用,并拥有配位金属离子所需的框架,从而产生迷人的超分子结构。后者可以转移到导电基底上,如HOPG和金,以便在各种条件下通过高端隧道显微镜进行评估。清楚了解核碱基自组装和金属离子络合的原理,并精确控制功能结构的生成,可能会导致用于靶向纳米技术和纳米材料应用的定制组件。