Suppr超能文献

蚂蚁运输网络中的局部成本最小化:从小规模数据到大规模权衡

Local cost minimization in ant transport networks: from small-scale data to large-scale trade-offs.

作者信息

Bottinelli A, van Wilgenburg E, Sumpter D J T, Latty T

机构信息

Mathematics Department, Uppsala University, Uppsala, Sweden

Department of Biological sciences, Fordham University, Bronx, NY, USA.

出版信息

J R Soc Interface. 2015 Nov 6;12(112). doi: 10.1098/rsif.2015.0780.

Abstract

Transport networks distribute resources and information in many human and biological systems. Their construction requires optimization and balance of conflicting criteria such as robustness against disruptions, transport efficiency and building cost. The colonies of the polydomous Australian meat ant Iridomyrmex purpureus are a striking example of such a decentralized network, consisting of trails that connect spatially separated nests. Here we study the rules that underlie network construction in these ants. We find that a simple model of network growth, which we call the minimum linking model (MLM), is sufficient to explain the growth of real ant colonies. For larger networks, the MLM shows a qualitative similarity with a Euclidean minimum spanning tree, prioritizing cost and efficiency over robustness. We introduce a variant of our model to show that a balance between cost, efficiency and robustness can be also reproduced at larger scales than ant colonies. Remarkably, such a balance is influenced by a parameter reflecting the specific features of the modelled transport system. The extended MLM could thus be a suitable source of inspiration for the construction of cheap and efficient transport networks with non-zero robustness, suggesting possible applications in the design of human-made networks.

摘要

运输网络在许多人类和生物系统中分配资源和信息。其构建需要对相互冲突的标准进行优化和平衡,例如抗干扰能力、运输效率和建设成本。澳大利亚多蚁巢的肉食蚁(Iridomyrmex purpureus)群体就是这样一个分散网络的显著例子,它由连接空间上分散巢穴的踪迹组成。在这里,我们研究这些蚂蚁构建网络所依据的规则。我们发现一个简单的网络生长模型,我们称之为最小连接模型(MLM),足以解释真实蚁群的生长。对于更大的网络,MLM与欧几里得最小生成树表现出定性相似性,将成本和效率置于稳健性之上。我们引入模型的一个变体来表明,在比蚁群更大的尺度上也可以再现成本、效率和稳健性之间的平衡。值得注意的是,这种平衡受到一个反映建模运输系统特定特征的参数的影响。因此,扩展的MLM可能是构建具有非零稳健性的廉价高效运输网络的合适灵感来源,这表明在人造网络设计中可能有应用。

相似文献

1
Local cost minimization in ant transport networks: from small-scale data to large-scale trade-offs.
J R Soc Interface. 2015 Nov 6;12(112). doi: 10.1098/rsif.2015.0780.
2
Nest- and colony-mate recognition in polydomous colonies of meat ants (Iridomyrmex purpureus).
Naturwissenschaften. 2006 Jul;93(7):309-14. doi: 10.1007/s00114-006-0109-y. Epub 2006 Mar 23.
3
Structure and formation of ant transportation networks.
J R Soc Interface. 2011 Sep 7;8(62):1298-306. doi: 10.1098/rsif.2010.0612. Epub 2011 Feb 2.
4
Exploration versus exploitation in polydomous ant colonies.
J Theor Biol. 2013 Apr 21;323:49-56. doi: 10.1016/j.jtbi.2013.01.022. Epub 2013 Feb 1.
5
From foraging trails to transport networks: how the quality-distance trade-off shapes network structure.
Proc Biol Sci. 2021 Apr 28;288(1949):20210430. doi: 10.1098/rspb.2021.0430. Epub 2021 Apr 21.
8
Self-organized lane formation and optimized traffic flow in army ants.
Proc Biol Sci. 2003 Jan 22;270(1511):139-46. doi: 10.1098/rspb.2002.2210.
9
Meat ants cut more trail shortcuts when facing long detours.
J Exp Biol. 2019 Nov 6;222(Pt 21):jeb205773. doi: 10.1242/jeb.205773.
10
All-Optical Implementation of the Ant Colony Optimization Algorithm.
Sci Rep. 2016 May 25;6:26283. doi: 10.1038/srep26283.

引用本文的文献

1
Central place foraging in an ectotherm and the long-term liability of selecting the "wrong" central place.
Behav Ecol. 2025 May 29;36(4):araf062. doi: 10.1093/beheco/araf062. eCollection 2025 Jul-Aug.
2
Better tired than lost: Turtle ant trail networks favor coherence over short edges.
PLoS Comput Biol. 2021 Oct 21;17(10):e1009523. doi: 10.1371/journal.pcbi.1009523. eCollection 2021 Oct.
3
From foraging trails to transport networks: how the quality-distance trade-off shapes network structure.
Proc Biol Sci. 2021 Apr 28;288(1949):20210430. doi: 10.1098/rspb.2021.0430. Epub 2021 Apr 21.
4
The costs and benefits of decentralization and centralization of ant colonies.
Behav Ecol. 2019 Nov-Dec;30(6):1700-1706. doi: 10.1093/beheco/arz138. Epub 2019 Aug 14.
5
Efficiency and shrinking in evolving networks.
J R Soc Interface. 2019 May 31;16(154):20190101. doi: 10.1098/rsif.2019.0101.
6
A distributed algorithm to maintain and repair the trail networks of arboreal ants.
Sci Rep. 2018 Jun 18;8(1):9297. doi: 10.1038/s41598-018-27160-3.

本文引用的文献

1
Animal transportation networks.
J R Soc Interface. 2014 Nov 6;11(100):20140334. doi: 10.1098/rsif.2014.0334.
2
Individual rules for trail pattern formation in Argentine ants (Linepithema humile).
PLoS Comput Biol. 2012;8(7):e1002592. doi: 10.1371/journal.pcbi.1002592. Epub 2012 Jul 19.
3
Mitigation of malicious attacks on networks.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3838-41. doi: 10.1073/pnas.1009440108. Epub 2011 Feb 22.
4
Structure and formation of ant transportation networks.
J R Soc Interface. 2011 Sep 7;8(62):1298-306. doi: 10.1098/rsif.2010.0612. Epub 2011 Feb 2.
5
Rules for biologically inspired adaptive network design.
Science. 2010 Jan 22;327(5964):439-42. doi: 10.1126/science.1177894.
6
Modeling urban street patterns.
Phys Rev Lett. 2008 Apr 4;100(13):138702. doi: 10.1103/PhysRevLett.100.138702. Epub 2008 Apr 2.
7
Biological solutions to transport network design.
Proc Biol Sci. 2007 Sep 22;274(1623):2307-15. doi: 10.1098/rspb.2007.0459.
8
Structure of optimal transport networks subject to a global constraint.
Phys Rev Lett. 2007 Feb 23;98(8):088701. doi: 10.1103/PhysRevLett.98.088701. Epub 2007 Feb 21.
9
Centrality measures in spatial networks of urban streets.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036125. doi: 10.1103/PhysRevE.73.036125. Epub 2006 Mar 24.
10
Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium.
Proc Biol Sci. 2004 Nov 7;271(1554):2305-10. doi: 10.1098/rspb.2004.2856.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验