The Salk Institute for Biological Studies, Integrative Biology Laboratory, La Jolla, CA, 92037, USA.
Department of Biology, Stanford University, Stanford, CA, 94035, USA.
Sci Rep. 2018 Jun 18;8(1):9297. doi: 10.1038/s41598-018-27160-3.
We study how the arboreal turtle ant (Cephalotes goniodontus) solves a fundamental computing problem: maintaining a trail network and finding alternative paths to route around broken links in the network. Turtle ants form a routing backbone of foraging trails linking several nests and temporary food sources. This species travels only in the trees, so their foraging trails are constrained to lie on a natural graph formed by overlapping branches and vines in the tangled canopy. Links between branches, however, can be ephemeral, easily destroyed by wind, rain, or animal movements. Here we report a biologically feasible distributed algorithm, parameterized using field data, that can plausibly describe how turtle ants maintain the routing backbone and find alternative paths to circumvent broken links in the backbone. We validate the ability of this probabilistic algorithm to circumvent simulated breaks in synthetic and real-world networks, and we derive an analytic explanation for why certain features are crucial to improve the algorithm's success. Our proposed algorithm uses fewer computational resources than common distributed graph search algorithms, and thus may be useful in other domains, such as for swarm computing or for coordinating molecular robots.
我们研究树栖龟蚁(Cephalotes goniodontus)如何解决一个基本的计算问题:维护一个路径网络,并找到绕过网络中断开链路的替代路径。龟蚁形成了觅食路径的路由主干,将几个巢穴和临时食物源连接起来。这种物种仅在树上活动,因此它们的觅食路径受到限制,只能位于由树冠中重叠的树枝和藤蔓形成的自然图上。然而,树枝之间的连接可能是短暂的,很容易被风和雨或动物的运动破坏。在这里,我们报告了一种使用现场数据参数化的生物上可行的分布式算法,该算法可以合理地描述龟蚁如何维护路由主干,并找到绕过主干中断开链路的替代路径。我们验证了该概率算法在模拟的合成和真实网络中断开情况下的绕过能力,并为为什么某些特征对提高算法的成功率至关重要提供了分析解释。我们提出的算法比常见的分布式图搜索算法使用更少的计算资源,因此可能在其他领域(例如群体计算或协调分子机器人)有用。