Yu Hongwei, Pan Bin, Weyer Andy, Wu Hsiang-En, Meng Jingwei, Fischer Gregory, Vilceanu Daniel, Light Alan R, Stucky Cheryl, Rice Frank L, Hudmon Andy, Hogan Quinn
Department of Anesthesiology and.
Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
J Neurosci. 2015 Oct 21;35(42):14086-102. doi: 10.1523/JNEUROSCI.1969-15.2015.
The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aβ-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aβ-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aβ-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aβ-LTMRs removes dorsal horn inhibition that otherwise prevents Aβ-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aβ-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions.
The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.
当快速传导的低阈值机械感受器(Aβ-LTMRs)在其皮肤终末产生冲动时,触觉即被引发。该系统中的可塑性在适应过程中很明显,即在先前刺激后会有一段敏感性降低的时期。CaMKII是介导触觉中活动依赖性可塑性的理想候选分子,因为它在神经元去极化后转变为增强的激活状态,从而能够反映过去的放电历史。在此我们表明,在感觉剥夺(胡须修剪、尾部悬吊、石膏固定)的大鼠模型中,感觉神经元CaMKII的自磷酸化编码了Aβ-LTMR的活动水平。CaMKII信号传导的阻断限制了离体皮肤中Aβ-LTMR动作电位产生的正常适应。当冲动通过背根神经节(DRG)中的感觉神经元T形接头传播时,CaMKII活性对于冲动序列的自然过滤也是必需的。在突触前Aβ-LTMR中选择性阻断CaMKII会消除背角抑制,否则该抑制会阻止Aβ-LTMR输入激活伤害性I层神经元。总之,Aβ-LTMR中CaMKII功能降低的这些后果导致低强度机械刺激产生疼痛行为。我们得出结论,在没有正常感觉活动来维持足够水平的CaMKII功能的情况下,触觉通路会转变为疼痛系统。在临床环境中,感觉废用可能是增强和延长由其他状况引发的慢性疼痛的关键因素。
触觉由称为低阈值机械感受器(LTMRs)的特殊感觉神经元提供服务。我们研究了CaMKII在调节这些神经元功能中的作用。CaMKII功能丧失,如在感觉剥夺期间大鼠中发生的那样,提高了LTMR的冲动产生和传播,并改变了脊髓回路,使得低阈值机械刺激产生疼痛行为。因为在疼痛状况下肢体被保护不被使用,LTMR的这种敏化可能使疼痛持续存在并阻止功能康复。