Suppr超能文献

亚马孙河溶解质负载:从安第斯山脉到海洋的时间动态变化与年度收支情况

Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.

作者信息

Moquet Jean-Sébastien, Guyot Jean-Loup, Crave Alain, Viers Jérôme, Filizola Naziano, Martinez Jean-Michel, Oliveira Tereza Cristina, Sánchez Liz Stefanny Hidalgo, Lagane Christelle, Casimiro Waldo Sven Lavado, Noriega Luis, Pombosa Rodrigo

机构信息

Geosciences Environnement Toulouse / Observatoire Midi-Pyrénées, CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France.

IRD, Casilla, 18-1209, Lima, 18, Peru.

出版信息

Environ Sci Pollut Res Int. 2016 Jun;23(12):11405-29. doi: 10.1007/s11356-015-5503-6. Epub 2015 Oct 21.

Abstract

The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have been characterized over all the studied stations and for all elements. The analysis of the slope of the relationship within the selected contexts reveals that the variability in TDS flux is mainly controlled by the discharge variability throughout the hydrological year. At the outlet of the basin, a clockwise hysteresis is observed for TDS concentration and is mainly controlled by Ca and HCO3 hysteresis, highlighting the need for a sampling strategy with a monthly frequency to accurately determine the TDS fluxes of the basin. The evaporite dissolution flux tends to be constant, whereas dissolved load fluxes released from other sources (silicate weathering, carbonate weathering, biological and/or atmospheric inputs) are mainly driven by variability in discharge. These results suggest that past and further climate variability had or will have a direct impact on the variability of dissolved fluxes in the Amazon. Further studies need to be performed to better understand the processes controlling the dynamics of weathering fluxes and their applicability to present-day concentration-discharge relationships at longer timescales.

摘要

本研究的目的是估算亚马逊河流域尺度上主要溶解物质的输出通量,确定控制其空间分布的主要参数,并确定流量变化在整个水文循环中总溶解固体(TDS)通量变化中的作用。数据来自“玻利维亚亚马逊河流域气候与水文计划”(PHICAB)的月度水化学和日流量数据库以及分布在亚马逊河流域的34个站点的HYBAM观测站(分别针对1983 - 1992年和2000 - 2012年期间)。本文首先对亚马逊河流域每个地貌区域的通量和时间动态进行了整体观测。基于年际月平均通量计算,我们估计在2003 - 2012年期间,亚马逊河流域输送了约272×10⁶吨/年(263 - 278)的TDS,约占大陆向海洋输入量的7%。该通量主要由HCO₃、Ca和SiO₂组成,反映了碳酸盐和硅酸盐化学风化对亚马逊河流域的优先贡献。对TDS通量贡献较大的主要支流是马拉尼翁河和乌卡亚利河(在亚马逊河流域面积的14%上产生了约50%的TDS),这是由于其安第斯支流排泄的碳酸盐和蒸发岩的风化作用。在整个流域观察到了一个安第斯 - 沉积区 - 盾形区的TDS通量(和比通量)梯度,首先可以用这些区域之间的TDS浓度差异来解释,而不是径流的变化。这一观测结果突出表明,在热带环境下,风化通量的分配主要受地貌/地质背景控制,并证实沉积区目前在溶解负荷的产生方面是活跃的。对所有研究站点和所有元素的浓度与流量的对数关系进行了表征。在选定背景下对关系斜率的分析表明,TDS通量的变化主要受整个水文年流量变化的控制。在流域出口处,观察到TDS浓度呈顺时针滞后现象,主要受Ca和HCO₃滞后现象控制,这突出了需要采用月度频率的采样策略来准确确定流域的TDS通量。蒸发岩溶解通量趋于恒定,而从其他来源(硅酸盐风化、碳酸盐风化、生物和/或大气输入)释放的溶解负荷通量主要受流量变化驱动。这些结果表明,过去和未来的气候变异性已经或将会对亚马逊河流域溶解通量的变化产生直接影响。需要进一步开展研究,以更好地理解控制风化通量动态的过程及其在更长时间尺度上对当今浓度 - 流量关系的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验