Donaire Livia, Burgyán József, García-Arenal Fernando
Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
Agricultural Biotechnology Institute, Gödöllo, Hungary.
J Virol. 2015 Oct 21;90(1):553-61. doi: 10.1128/JVI.02345-15. Print 2016 Jan 1.
The multiplicity of infection (MOI), i.e., the number of viral genomes that infect a cell, is an important parameter in virus evolution, which for each virus and environment may have an optimum value that maximizes virus fitness. Thus, the MOI might be controlled by virus functions, an underexplored hypothesis in eukaryote-infecting viruses. To analyze if the MOI is controlled by virus functions, we estimated the MOI in plants coinfected by two genetic variants of Tomato bushy stunt virus (TBSV); by TBSV and a TBSV-derived defective interfering RNA (DI-RNA); or by TBSV and a second tombusvirus, Cymbidium ringspot virus (CymRSV). The MOI was significantly larger in TBSV-CymRSV coinfections (4.0) than in TBSV-TBSV or TBSV-DI-RNA coinfections (1.7 to 2.2). Coinfections by CymRSV or TBSV with chimeras in which an open reading frame (ORF) of one virus species was replaced by that of the other identified a role of viral proteins in determining the MOI, which ranged from 1.6 to 3.9 depending on the coinfecting genotypes. However, no virus-encoded protein or genomic region was the sole MOI determinant. Coinfections by CymRSV and TBSV mutants in which the expression of the gene-silencing suppressor protein p19 was abolished also showed a possible role of gene silencing in MOI determination. Taken together, these results demonstrate that the MOI is a quantitative trait showing continuous variation and that as such it has a complex determination involving different virus-encoded functions.
The number of viral genomes infecting a cell, or the multiplicity of infection (MOI), is an important parameter in virus evolution affecting recombination rates, selection intensity on viral genes, evolution of multipartite genomes, or hyperparasitism by satellites or defective interfering particles. For each virus and environment, the MOI may have an optimum value that maximizes virus fitness, but little is known about MOI control in eukaryote-infecting viruses. We show here that in plants coinfected by two genotypes of Tomato bushy stunt virus (TBSV), the MOI was lower than in plants coinfected by TBSV and Cymbidium ringspot virus (CymRSV). Coinfections by CymRSV or TBSV with TBSV-CymRSV chimeras showed a role of viral proteins in MOI determination. Coinfections by CymRSV and TBSV mutants not expressing the gene-silencing suppressor protein also showed a role of gene silencing in MOI determination. The results demonstrate that the MOI is a quantitative trait with a complex determination involving different viral functions.
感染复数(MOI),即感染一个细胞的病毒基因组数量,是病毒进化中的一个重要参数,对于每种病毒和环境而言,可能存在一个能使病毒适应性最大化的最佳值。因此,MOI可能受病毒功能控制,这在感染真核生物的病毒中是一个尚未充分探索的假说。为了分析MOI是否受病毒功能控制,我们估计了被番茄丛矮病毒(TBSV)的两种遗传变体共同感染的植物中的MOI;被TBSV和一种源自TBSV的缺陷干扰RNA(DI-RNA)共同感染的植物中的MOI;以及被TBSV和第二种番茄病毒属病毒——建兰花叶病毒(CymRSV)共同感染的植物中的MOI。在TBSV与CymRSV共同感染的情况下(约为4.0),MOI显著高于TBSV与TBSV或TBSV与DI-RNA共同感染的情况(约为1.7至2.2)。CymRSV或TBSV与嵌合体(其中一种病毒物种的开放阅读框被另一种病毒物种的开放阅读框取代)的共同感染确定了病毒蛋白在决定MOI中的作用,根据共同感染的基因型不同,MOI范围为1.6至3.9。然而,没有一种病毒编码蛋白或基因组区域是唯一的MOI决定因素。CymRSV和TBSV突变体(其中基因沉默抑制蛋白p19的表达被消除)的共同感染也表明基因沉默在MOI决定中可能发挥作用。综上所述,这些结果表明MOI是一个呈现连续变化的数量性状,因此其决定过程复杂,涉及不同的病毒编码功能。
感染一个细胞的病毒基因组数量,即感染复数(MOI),是病毒进化中的一个重要参数,会影响重组率、病毒基因上的选择强度、多分体基因组的进化,或卫星或缺陷干扰颗粒的超寄生现象。对于每种病毒和环境而言,MOI可能有一个能使病毒适应性最大化的最佳值,但对于感染真核生物的病毒中MOI的控制知之甚少。我们在此表明,在被两种基因型的番茄丛矮病毒(TBSV)共同感染的植物中,MOI低于被TBSV和建兰花叶病毒(CymRSV)共同感染的植物。CymRSV或TBSV与TBSV - CymRSV嵌合体的共同感染表明病毒蛋白在MOI决定中发挥作用。CymRSV和不表达基因沉默抑制蛋白的TBSV突变体的共同感染也表明基因沉默在MOI决定中发挥作用。结果表明,MOI是一个数量性状,其决定过程复杂,涉及不同的病毒功能。