Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac 33607, France.
CNRS, CBMN, UMR 5248, F-33600, Pessac, France.
Nat Chem. 2015 Nov;7(11):871-8. doi: 10.1038/nchem.2353. Epub 2015 Sep 28.
The design and construction of biomimetic self-assembling systems is a challenging yet potentially highly rewarding endeavour that contributes to the development of new biomaterials, catalysts, drug-delivery systems and tools for the manipulation of biological processes. Significant progress has been achieved by engineering self-assembling DNA-, protein- and peptide-based building units. However, the design of entirely new, completely non-natural folded architectures that resemble biopolymers ('foldamers') and have the ability to self-assemble into atomically precise nanostructures in aqueous conditions has proved exceptionally challenging. Here we report the modular design, formation and structural elucidation at the atomic level of a series of diverse quaternary arrangements formed by the self-assembly of short amphiphilic α-helicomimetic foldamers that bear proteinaceous side chains. We show that the final quaternary assembly can be controlled at the sequence level, which permits the programmed formation of either discrete helical bundles that contain isolated cavities or pH-responsive water-filled channels with controllable pore diameters.
仿生自组装系统的设计与构建是一项富有挑战性但又极具潜力的工作,它有助于开发新型生物材料、催化剂、药物输送系统以及用于操控生物过程的工具。通过工程设计自组装的 DNA、蛋白质和肽基构建单元,已经取得了重大进展。然而,设计完全新颖的、完全非天然折叠结构,这些结构类似于生物聚合物(“foldamers”),并且能够在水相条件下自组装成原子精确的纳米结构,这被证明是极其具有挑战性的。在这里,我们报告了一系列由短的两亲性α-螺旋拟肽折叠分子自组装形成的多种四元排列的模块化设计、形成和原子水平结构阐明,这些折叠分子带有蛋白质侧链。我们表明,最终的四元组装可以在序列水平上进行控制,这允许有控制地形成离散的螺旋束,其中包含孤立的空腔,或者 pH 响应的充满水的通道,具有可控制的孔径。