Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
J Nanobiotechnology. 2014 Feb 3;12:4. doi: 10.1186/1477-3155-12-4.
Natural polymers are able to self-assemble into versatile nanostructures based on the information encoded into their primary structure. The structural richness of biopolymer-based nanostructures depends on the information content of building blocks and the available biological machinery to assemble and decode polymers with a defined sequence. Natural polypeptides comprise 20 amino acids with very different properties in comparison to only 4 structurally similar nucleotides, building elements of nucleic acids. Nevertheless the ease of synthesizing polynucleotides with selected sequence and the ability to encode the nanostructural assembly based on the two specific nucleotide pairs underlay the development of techniques to self-assemble almost any selected three-dimensional nanostructure from polynucleotides. Despite more complex design rules, peptides were successfully used to assemble symmetric nanostructures, such as fibrils and spheres. While earlier designed protein-based nanostructures used linked natural oligomerizing domains, recent design of new oligomerizing interaction surfaces and introduction of the platform for topologically designed protein fold may enable polypeptide-based design to follow the track of DNA nanostructures. The advantages of protein-based nanostructures, such as the functional versatility and cost effective and sustainable production methods provide strong incentive for further development in this direction.
天然聚合物能够基于其一级结构中编码的信息自组装成多功能纳米结构。基于生物聚合物的纳米结构的结构丰富度取决于构建块的信息含量以及可用的生物机制,用于组装和解码具有定义序列的聚合物。与仅 4 种结构相似的核苷酸(核酸的构建元件)相比,天然多肽由 20 种氨基酸组成,具有非常不同的性质。然而,合成具有选定序列的多核苷酸的容易性以及基于两个特定核苷酸对编码纳米结构组装的能力为自组装技术的发展奠定了基础,几乎可以从多核苷酸中自组装任何选定的三维纳米结构。尽管设计规则更加复杂,但多肽已成功用于组装对称纳米结构,如纤维和球体。虽然早期设计的基于蛋白质的纳米结构使用连接的天然寡聚化结构域,但最近设计新的寡聚化相互作用表面和引入拓扑设计的蛋白质折叠平台可能使基于多肽的设计能够遵循 DNA 纳米结构的轨道。基于蛋白质的纳米结构的优势,例如功能多样性以及具有成本效益和可持续的生产方法,为朝着这一方向进一步发展提供了强大的动力。