Department of Chemistry and Center for Metals in Biocatalysis, University Of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.
Acc Chem Res. 2015 Nov 17;48(11):2885-94. doi: 10.1021/acs.accounts.5b00336. Epub 2015 Oct 22.
Alfred Werner, who pioneered the field of coordination chemistry, envisioned coordination complexes as a single, transition metal atom at the epicenter of a vast ligand space. The idea that the locus of a coordination complex could be shared by multiple metals held together with covalent bonds would eventually lead to the discovery of the quadruple and quintuple bond, which have no analogues outside of the transition metal block. Metal-metal bonding can be classified into homometallic and heterometallic groups. Although the former is dominant, the latter is arguably more intriguing because of the inherently larger chemical space in which metal-metal bonding can be explored. In 2013, Lu and Thomas independently reported the isolation of heterometallic multiple bonds with exclusively first-row transition metals. Structural and theoretical data supported triply bonded Fe-Cr and Fe-V cores. This Account describes our continued efforts to configure bonds between first-row transition metals from titanium to copper. Double-decker ligands, or binucleating platforms that brace two transition metals in proximity, have enabled the modular synthesis of diverse metal-metal complexes. The resulting complexes are also ideal for investigating the effects of an "ancillary" metal on the properties and reactivities of an "active" metal center. A total of 38 bimetallic complexes have been compiled comprising 18 unique metal-metal pairings. Twenty-one of these bimetallics are strictly isostructural, allowing for a systematic comparison of metal-metal bonding. The nature of the chemical bond between first-row metals is remarkably variable and depends on two primary factors: the total d-electron count, and the metals' relative d-orbital energies. Showcasing the range of covalent bonding are a quintuply bonded (d-d)(10) Mn-Cr heterobimetallic and the singly bonded late-late pairings, e.g., Fe-Co, which adopt unusually high spin states. A long-term goal is to rationally tailor the properties and reactivities of the bimetallic complexes. In some cases, synergistic redox and magnetic properties were found that are different from the expected sum of the individual metals. Intermetal charge transfer was shown in a Co-M series, for M = Mn to Cu, where the transition energy decreases as M is varied across the first-row period. The potential of using metal-metal complexes for multielectron reduction of small-molecules is addressed by N2 binding studies and a mechanistic study of a dicobalt catalyst in reductive silylation of N2 to N(SiMe3)3. Finally, metal-ion exchange reactions with metal-metal complexes can be selective under appropriate reaction conditions, providing an alternative synthetic route to metal-metal species.
阿尔弗雷德·维尔纳(Alfred Werner)是配位化学领域的先驱,他将配位化合物设想为一个单一的过渡金属原子位于巨大配体空间的中心。配位化合物的中心位置可以由多个金属原子共享,这些金属原子通过共价键结合在一起,这最终导致了四重键和五重键的发现,而这些键在过渡金属块之外没有类似物。金属-金属键可以分为同核和异核两组。尽管前者占主导地位,但后者更有趣,因为金属-金属键可以在更大的化学空间中进行探索。2013 年,Lu 和 Thomas 独立报道了仅由第一过渡金属组成的异核多重键的分离。结构和理论数据支持三键 Fe-Cr 和 Fe-V 核。本综述描述了我们继续努力构建从钛到铜的第一过渡金属之间的键。双层配体,或支撑两个过渡金属接近的双核配体平台,已经实现了不同金属-金属配合物的模块化合成。所得配合物也非常适合研究“辅助”金属对“活性”金属中心的性质和反应性的影响。共编译了 38 个双金属配合物,包含 18 个独特的金属-金属对。其中 21 个双金属严格同构,允许对金属-金属键进行系统比较。第一过渡金属之间化学键的性质变化很大,取决于两个主要因素:总 d 电子数和金属的相对 d 轨道能量。展示了一系列共价键的是五重键(d-d)(10)Mn-Cr 异核双金属和单键的后后期配对,例如 Fe-Co,其采用异常高的自旋态。一个长期目标是合理地调整双金属配合物的性质和反应性。在某些情况下,发现协同的氧化还原和磁性质与单个金属的预期总和不同。在 Co-M 系列中观察到了金属间电荷转移,其中 M 为 Mn 到 Cu,随着第一过渡周期中 M 的变化,跃迁能量降低。通过对 N2 结合研究和二钴催化剂在 N2 还原硅烷化反应中还原 N(SiMe3)3 的机理研究,探讨了金属-金属配合物用于小分子多电子还原的潜力。最后,在适当的反应条件下,金属-金属配合物的金属离子交换反应可以具有选择性,为金属-金属物种的合成提供了另一种途径。