Poullet Nausicaa, Vielle Anne, Gimond Clotilde, Ferrari Céline, Braendle Christian
Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, 06108 Nice cedex 02, France.
Université Nice Sophia Antipolis, UFR Sciences, 06108 Nice cedex 02, France.
Evol Dev. 2015 Nov-Dec;17(6):380-97. doi: 10.1111/ede.12170.
Thermal developmental plasticity represents a key organismal adaptation to maintain reproductive capacity in contrasting and fluctuating temperature niches. Although extensively studied, research on thermal plasticity has mainly focused on phenotypic outcomes, such as adult life history, rather than directly measuring plasticity of underlying developmental processes. How thermal plasticity of developmental phenotypes maps into plasticity of resulting final phenotypes, and how such mapping relationships evolve, thus remain poorly understood. Here we address these questions by quantifying thermal plasticity of Caenorhabditis hermaphrodite germline development. We integrate measurements of germline development and fertility at the upper thermal range in isolates of C. briggsae, C. elegans, and C. tropicalis. First, we compare intra- and interspecific variation in thermal germline plasticity with plasticity in reproductive output. Second, we ask whether the developmental errors leading to fertility break-down at upper thermal limits are evolutionarily conserved. We find that temperature variation modulates spermatogenesis, oogenesis and germ cell progenitor pools, yet the thermal sensitivity of these processes varies among isolates and species, consistent with evolutionary variation in upper thermal limits of hermaphrodite fertility. Although defective sperm function is a major contributor to heat-induced fertility break-down, high temperature also significantly perturbs oogenesis, germline integrity, and mitosis-meiosis progression. Remarkably, the occurrence and frequency of specific errors are strongly species- and genotype-dependent, indicative of evolutionary divergence in thermal sensitivity of distinct processes in germline development. Therefore, the Caenorhabditis reproductive system displays complex genotype-by-temperature interactions at the developmental level, which may remain masked when studying thermal plasticity exclusively at the life history level.
热发育可塑性是生物体的一种关键适应性特征,用于在不同且波动的温度环境中维持繁殖能力。尽管热可塑性已得到广泛研究,但相关研究主要集中在表型结果上,比如成虫的生活史,而非直接测量潜在发育过程的可塑性。发育表型的热可塑性如何映射到最终表型的可塑性,以及这种映射关系如何演变,目前仍知之甚少。在此,我们通过量化秀丽隐杆线虫雌雄同体生殖系发育的热可塑性来解决这些问题。我们整合了在较高温度范围内对briggsae、秀丽隐杆线虫和tropicalis分离株的生殖系发育和生育力的测量数据。首先,我们比较了生殖系热可塑性的种内和种间变异与生殖输出的可塑性。其次,我们探究导致高温下生育力下降的发育错误在进化上是否保守。我们发现温度变化会调节精子发生、卵子发生和生殖细胞祖细胞库,但这些过程的热敏感性在不同分离株和物种之间存在差异,这与雌雄同体生育力的高温上限的进化变异一致。尽管精子功能缺陷是热诱导生育力下降的主要原因,但高温也会显著扰乱卵子发生、生殖系完整性以及有丝分裂 - 减数分裂进程。值得注意的是,特定错误的发生和频率强烈依赖于物种和基因型,这表明生殖系发育中不同过程的热敏感性存在进化差异。因此,秀丽隐杆线虫的生殖系统在发育水平上表现出复杂的基因型与温度的相互作用,而仅在生活史水平上研究热可塑性时,这种相互作用可能会被掩盖。